Advertisement

Eurasian Soil Science

, Volume 47, Issue 9, pp 845–862 | Cite as

Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica)

  • N. S. MergelovEmail author
Genesis and Geography of Soils

Abstract

The properties and spatial distribution of soils and soil-like bodies in valleys of the coastal Larsemann Hills and Vestfold Hills oases—poorly investigated in terms of the soil areas of East Antarctica—are discussed. In contrast to Dry Valleys—large continental oases of Western Antarctica—the studied territory is characterized by the presence of temporarily waterlogged sites in the valleys. It is argued that the deficit of water rather than the low temperature is the major limiting factor for the development of living organisms and the pedogenesis on loose substrates. The moisture gradients in the surface soil horizons explain the spatial distribution of the different soils and biotic complexes within the studied valleys. Despite the permanent water-logging of the deep suprapermafrost horizons of most of the soils in the valleys, no gley features have been identified in them. The soils of the wet valleys in the Larsemann Hills oasis do not contain carbonates. They have a slightly acid or neutral reaction. The organic carbon and nitrogen contents are mainly controlled by the amount of living and dead biomass rather than by the humic substances proper. The larger part of the biomass is concentrated inside the mineral soil matrix rather than on the soil surface. The stresses caused by surface drying, strong winds, and ultraviolet radiation prevent the development of organisms on the surface of the soil and necessitate the search for shelter within the soil fine earth material (endoedaphic niche) or under the gravelly pavement (hypolithic niche). In the absence of higher plants, humified products of their decomposition, and rainwater that can wash the soil profile and upon the low content of silt and clay particles in the soil material, “classical” soil horizons are not developed. The most distinct (and, often, the only diagnosed) products of pedogenesis in these soils are represented by organomineral films on the surface of mineral particles.

Keywords

organomineral interactions extreme conditions biofilms endoliths 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abramov, V. A. Mironov, A. V. Lupachev, D. G. Fedorov-Davydov, S. V. Goryachkin, N. S. Mergelov, A. I. Ivashchenko, V. V. Lukin, and D. A. Gilichinskii, “Geocryological conditions of Antarctic oases,” in Polar Cryosphere and Terrestrial Water. Contribution of Russian to the International Polar Year 2007/2008, Ed. by V. M. Kotlyakov (Paulsen Editions, Moscow, 2011), pp. 233–244 [in Russian].Google Scholar
  2. 2.
    S. V. Goryachkin, D. A. Gilichinskii, E. V. Abakumov, E. P. Zazovskaya, N. S. Mergelov, D. G. Fedorov-Davydov, “Soils of Antarctica: diversity, geography, genesis (case study of Russian Antarctic stations),” in Diversity of Frost-Affected Soils and Their Role in Eco-systems, Mater. V Int. Conf. on Cryopedology, Ulan-Ude, Buryatia, Russia, Sept. 14–20, 2009) (Moscow-Ulan-Ude, 2009), p. 33.Google Scholar
  3. 3.
    A. V. Dolgikh, A. V. Lupachev, and N. S. Mergelov, “Soils and soil-like bodies of the Thala Hills oasis (Enderby Land, East Antarctica),” in Natural and Anthropogenic Geosystems: World and Regional Experience of the Study Abstr. IV Conf.-Seminar Young Scientists (2012), pp. 129–131 [in Russian].Google Scholar
  4. 4.
    M. S. Egorov, “Substantive composition and genesis of the Middle and Upper Holocene deposits in the Vestfold oasis, in Scientific Results of Russian Geological and Geophysical Investigations in Antarctica, Iss. 3, 21–36 (2011) [in Russian].Google Scholar
  5. 5.
    V. G. Zakharov, M. R. Andreev, and O. N. Solomina, “Changes in glaciation in the area of Amery Ice Shelf (East Antarctica) according to lichenometric data,” in Antarctica, Ed. by V. M. Kotlyakov (Nauka, Moscow, 1988), pp. 130–139 [in Russian].Google Scholar
  6. 6.
    A. V. Lupachev and E. V. Abakumov, “Soils of Marie Byrd Land, West Antarctica,” Eur. Soil Sci. 46(10), 994–1006 (2013).CrossRefGoogle Scholar
  7. 7.
    N. S. Mergelov, S. V. Goryachkin, I. G. Shorkunov, E. P. Zazovskaya, A. E. Cherkinskii, “Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica,” Eur. Soil Sci. 45(10), 901–917 (2012).CrossRefGoogle Scholar
  8. 8.
    V. S. Soina, A. G. Gazimullina, N. S. Mergelov, L. V. Lysak, E. V. Lapygina, “Bacterial complexes in soils of wet valleys of the Larsemann oasis, East Antarctica,” Al’manakh Sovrem. Nauki Obrazovan., No. 9, 195–200 (2012).Google Scholar
  9. 9.
    I. N. Sokratova, Antarctic Oases: History and Results of Investigations (St. Petersburg, 2010) [in Russian].Google Scholar
  10. 10.
    D. Adamson and J. Pickard, “Late Quaternary ice movement across the Vestfold Hills, East Antarctica,” in Antarctic Earth Science, Ed. by R. L. Oliver, P. R. James, and J. B. Lago (Cambridge Univ. Press, NY, 1983), pp. 465–469.Google Scholar
  11. 11.
    D. A. Adamson and J. Pickard, “Cainozoic history of the Vestfold Hills,” in Antarctic Oasis. Terrestrial Environments and History of the Vestfold Hills, Ed. by J. Pickard, (Academic Press, Sydney, 1986), pp. 63–97.Google Scholar
  12. 12.
    P. Aharon, “Oxygen, carbon and U-series isotopes of aragonites from Vestfold Hills, Antarctica: clues to geochemical processes in subglacial environments,” Geochim. Cosmochim. Acta 52(9), 2321–2331 (1988).CrossRefGoogle Scholar
  13. 13.
    U. Brehm, A. Gorbushina, and D. Mottershead, “The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 219(1–2), 117–129 (2005).CrossRefGoogle Scholar
  14. 14.
    P. A. Broady, “Ecology and taxonomy of the terrestrial algae at the Vestfold Hills,” in Antarctic Oasis. Terrestrial Environments and History of the Vestfold Hills, Ed. by J. Pickard, (Academic Press, Sydney, 1986), pp. 165–202.Google Scholar
  15. 15.
    P. A. Broady, “Diversity, distribution and dispersal of Antarctic terrestrial algae,” Biodiv. Conserv. 5, 1307–1335 (1996).CrossRefGoogle Scholar
  16. 16.
    Ch. Bronge, “Hydrographic and climatic changes influencing the proglacial Druzhby drainage system, Vestfold Hills, Antarctica,” Antarct. Sci. 8(4), 379–388 (1996).CrossRefGoogle Scholar
  17. 17.
    J. S. Burgess, A. P. Spate, and J. Shevlin, “The onset of deglaciation in the Larsemann Hills, Eastern Antarctica,” Antarct. Sci. 6, 491–495 (1994).CrossRefGoogle Scholar
  18. 18.
    C. J. Carson, P. G. H. M. Dirks, M. Hand, J. P. Sims, C. J. L. Wilson, “Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica,” Geol. Mag. 132, 151–170 (1995).CrossRefGoogle Scholar
  19. 19.
    J. W. Costerton, K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, T. J. Marrie, “Bacterial biofilms in nature and disease,” Ann. Rev. Microbiol. 41, 435–464 (1987).CrossRefGoogle Scholar
  20. 20.
    L. Cromer, J. A. E. Gibson, K. M. Swadling, and D. A. Hodgson, “Evidence for a lacustrine faunal refuge in the Larsemann Hills, East Antarctica, during the last glacial maximum,” J. Biogeogr. 33, 1314–1323 (2006).CrossRefGoogle Scholar
  21. 21.
    A. Réos, J. Wierzchos, L. Sancho, and C. Ascaso, “Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems,” Environ. Microbiol. 5(4), 231–237 (2003).CrossRefGoogle Scholar
  22. 22.
    P. H. G. M. Dirks, C. J. Carson, and C. J. L. Wilson, “The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica,” Antarct. Sci. 5(2), 179–192 (1993).CrossRefGoogle Scholar
  23. 23.
    J. C. Ellis-Evans, J. Laybourn-Parry, P. R. Bayliss, and S. J. Perriss, “Physical, chemical and microbial community characteristics of lakes of the Larsemann Hills, continental Antarctica,” Archiv Hydrobiol. 141(2), 209–230 (1998).Google Scholar
  24. 24.
    J. C. Ellis-Evans, “Micro-scale distribution of photoautotrophic micro-organisms in relation to light, temperature and moisture in Antarctic Lithosols,” in Ecosystem Processes in Antarctic Ice-Free Landscapes, Ed. by W. B. Lyons, C. Howard-Williams, and I. Hawes (Balkema, Rotterdam, 1997), pp. 89–101.Google Scholar
  25. 25.
    D. Fedorov-Davydov, N. Mergelov, A. Dolgikh, A. Lupachev, K. Krivushin, “Cellulolytic activity of soils around Russian Antarctic stations,” in Frost-Affected Soils. Dynamic Soils in the Dynamic World (Abstr. VI Int. Conf. Cryopedology (Krakow, Poland, 2013), p. 13.Google Scholar
  26. 26.
    I. Friedmann, Y. Lipkin, and Roseli Ocampo-Paus, “Desert algae of the Negev (Israel),” Phycologia 6(4), 185–200 (1967).CrossRefGoogle Scholar
  27. 27.
    M. Gasparon, “Human impacts in Antarctica: trace element geochemistry of freshwater lakes in the Larsemann Hills, East Antarctica,” Environ. Geogr. 39(9), 963–976 (2000).Google Scholar
  28. 28.
    M. Gasparon, R. Lanyon, J. S. Burgess, and I. A. Sigu- rdsson, “The freshwater lakes of the Larsemann Hills, East Antarctica: chemical characteristics of the water column,” ANARE Res. Notes 147, 1–28 (2002).Google Scholar
  29. 29.
    Geology of the Larsemann Hills — Lithology. M 1: 25000, (Australian Antarctic Division, 1997).Google Scholar
  30. 30.
    D. Gillieson, J. Burgess, A. Spate, and A. Cochrane, “An atlas of the lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica,” ANARE Res. Notes 74, 1–73 (1990).Google Scholar
  31. 31.
    A. Gorbushina, “Life on the rocks,” Environ. Microbiol. 9(7), 1613–1631 (2007).CrossRefGoogle Scholar
  32. 32.
    T. G. A. Green and P. A. Broady, “Biological soil crusts: structure, function, and management,” Ecol. Stud. 150(I), 133–139 (2001).CrossRefGoogle Scholar
  33. 33.
    J. Guezennec, B. O. Ortega-Morales, G. Raguenes, and G. Geesey, “Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents,” FEMS Microbiol. Ecol. 26, 89–99 (1998).CrossRefGoogle Scholar
  34. 34.
    H. Hirvas, K. Nenonen, and P. Quilty, “Till stratigraphy and glacial history of the Vestfold Hills Area, East Antarctic,” Quatern. Int. 18, 81–95 (1993).CrossRefGoogle Scholar
  35. 35.
    D. A. Hodgson, P. E. Noon, W. Vyverman, C. L. Bryant, D. B. Gore, P. Appleby, M. Gilmour, E. Verleyen, K. Sabbe, V. J. Jones, J. C. Ellis-Evans, P. B. Wood, “Were the Larsemann Hills ice-free through the last glacial maximum?,” Antarct. Sci. 13, 440–454 (2001).Google Scholar
  36. 36.
    D. A. Hodgson, E. Verleyen, K. Sabbe, A. H. Squier, B. J. Keely, M. J. Leng, K. M. Saunders, W. Vyverman, “Late Quaternary climate-driven environmental change in the Larsemann Hills, East Antarctica, multiproxy evidence from a lake sediment core,” Quat. Res. 64, 83–99 (2005).CrossRefGoogle Scholar
  37. 37.
    D. A. Hodgson, E. Verleyen, A. H. Squier, K. Sabbe, B. J. Keely, K. M. Saunders, W. Vyverman, “Interglacial environments of coastal East Antarctica: comparison of MIS 1 (Holocene) and MIS 5e (last interglacial) lake-sediment records,” Quat. Sci. Rev. 25, 179–197 (2006).CrossRefGoogle Scholar
  38. 38.
    E. Kaup and J. S. Burgess, “Surface and subsurface flows of nutrients in natural and human impacted lake catchments on Broknes, Larsemann Hills, Antarctica,” Antarct. Sci. 14((4)), 343–352 (2002).CrossRefGoogle Scholar
  39. 39.
    E. Kerry, “Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica,” Polar Biol. 13, 163–170 (1993).CrossRefGoogle Scholar
  40. 40.
    K. Kiernan, D. Gore, D. Fink, D. White, A. McConnell, I. Sigurdsson, “Deglaciation and weathering of Larsemann Hills, East Antarctica,” Antarct. Sci. 21, 373 (2009).CrossRefGoogle Scholar
  41. 41.
    S. E. Lindow and M. T. Brandl, “Microbiology of the phyllosphere,” Appl. Environ. Microbiol. 69, 1875–1883 (2003).CrossRefGoogle Scholar
  42. 42.
    M. A. Line, “Microbial flora of some soils of Mawson Base and the Vestfold Hills, Antarctica,” Polar Biol. 8, 421–427 (1988).CrossRefGoogle Scholar
  43. 43.
    E. E. MacNamara, “Active layer development and soil moisture dynamics in Enderby land, East Antarctica,” Soil Sci. 105, 345–349 (1969).CrossRefGoogle Scholar
  44. 44.
    N. Mergelov, I. Shorkunov, and V. Shishkov, “OrganoMineral coatings as the major pedogenesis product and information carrier on coarse-grained and rocky substrates in extreme environment” in Frost-Affected Soils — Dynamic Soils in the Dynamic World (Abstr. VI Int. Conf. Cyopedology (Krakow, 2013), p. 13.Google Scholar
  45. 45.
    T. Negoita, G. Stefanic, M. Irimescu-Orzan, G. Oprea, V. Palanciuc, “Chemical and biological characterization of soils from the Antarctic east coast,” Polar Biol. 24(8), 565–571 (2001).CrossRefGoogle Scholar
  46. 46.
    J. A. Nienow and E. I. Friedmann, “Terrestrial lithophytic (rock) communities,” in Antarctic Microbiology, Ed. by E. I. Friedmann (Wiley-Liss, NY, 1993), pp. 343–412.Google Scholar
  47. 47.
    B. O. Ortega-Morales, A. Lopez-Cortes, G. Hernandez-Duque, P. Crassous, J. Guezennec, “Extracellular polymers of microbial communities colonizing ancient limestone monuments,” Microb. Growth Biof. 336 Part A, 331–339 (2001).Google Scholar
  48. 48.
    J. Pickard and R. D. Seppelt, “Holocene occurrence of the moss Bryum algens Card. in the Vestfold Hills, Antarctica,” J. Bryol. 13, 209–217 (1984).CrossRefGoogle Scholar
  49. 49.
    E. Rosenberg, “Biofilms on Water-Soluble Substrates,” in Structure and Function of Biofilms, Ed. by W. G. Characklis and P. A. Wilderer (Wiley, Chichester, UK, 1989), pp. 59–72. W.G., Wilderer P.A (UK.: Wiley, Chichester, 1989).Google Scholar
  50. 50.
    R. D. Seppelt and P. A. Broady, “Antarctic terrestrial ecosystems: the Vestfold Hills in context,” in Biology of the Vestfold Hills, Antarctica Ed. by J. M. Ferris, H. R. Burton, G. W. Johnstone, and I. A. E. Bayly. Kluwer Acad. Publ., Hydrobiologia 165, 177–184 (1988).CrossRefGoogle Scholar
  51. 51.
    R. D. Seppelt, “Bryophytes of the Vestfold Hills,” in Antarctic Oasis: Terrestrial Environments and History of the Vestfold Hills, Ed. by J. Pickard (Academic Press, Sydney, 1986), pp. 221–245.Google Scholar
  52. 52.
    A. H. Squier, D. A. Hodgson, and J. Keely, “Evidence of Late Quaternary environmental change in a continental East Antarctic Lake from lacustrine sedimentary pigment distributions,” Antarct. Sci. 17, 361–376 (2005).CrossRefGoogle Scholar
  53. 53.
    K. Stuwe, H.-M. Braun, and H. Peer, “Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica,” Austral. J. Earth Sci. 36(2), 219–241 (1989).CrossRefGoogle Scholar
  54. 54.
    E. Verleyen, D. A. Hodgson, K. Sabbe, and W. Vyverman, “Late Quaternary deglaciation and climate history of the Larsemann Hills, East Antarctica,” J. Quat. Sci. 19, 361–375 (2004).CrossRefGoogle Scholar
  55. 55.
    Y. G. Wang and J. Zhao, “Element distribution at Stornes Peninsula, Larsemann Hills, East Antarctica,” Jidi Yanjiu 9(4), 283–288 (1997).Google Scholar
  56. 56.
    WP8 Larsemann Hills, East Antarctica Antarctic Specially Managed Area Management Plan, 2006 (ATCM XXIX, Edinburgh, 2006)..Google Scholar
  57. 57.
    Q. Zhang and J. A. Peterson, “A geomorphology and Late Quaternary Geology of the Vestfold Hills,” ANARE reports, No. 133 (1984).Google Scholar
  58. 58.
    D. Zwartz, M. Bird, J. Stone, and K. Lambeck, “Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica,” Earth Planet. Sci. Lett., 131–145 (1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of GeographyRussian Academy of SciencesMoscowRussia

Personalised recommendations