Eurasian Soil Science

, Volume 47, Issue 8, pp 741–751 | Cite as

Cryometamorphic gleyzems in the taiga of Western Siberia: Chemical and mineralogical properties, ecology, and genesis

  • N. A. KaravaevaEmail author
  • T. A. Sokolova
Genesis and Geography of Soils


Earlier studies showed considerable differences in the properties of automorphic loamy soils developing under middle-taiga vegetation in Western Siberia and on the Russian Plain. It was found that the soils without clear features of textural differentiation are common in Western Siberia. In particular, they are represented by cryometamorphic gleyzems. In this study, we analyze the properties of a cryometamorphic gleyzem in the Vakh area (the Khanty-Mansi Autonomous Okrug). The distribution pattern of clay minerals in the soil profile is analyzed in relation to the specific features of the soil hydrothermic regime. In the upper mineral horizons, the clay fraction is enriched in minerals of the group of soil chlorites and somewhat depleted of labile phyllosilicates. In the cryometamorphic horizon and in the underlying permafrost, the degree of crystallization of the clay minerals somewhat decreases. An even distribution pattern of aluminum oxide in the soil profile is explained by the increased content of Al in the clay fraction from the upper horizons combined with the loss of Al from the coarse fractions (as judged from data on the bulk elemental composition of clay-free samples). These features can be explained by the specificity of the hydrothermic regime of the cryometamorphic gleyzems with late thawing of the soil profile and frequent phase transitions of soil water in the upper humus and middle-profile cryometamorphic horizons.


cryometamorphic gleyzem transformation of clay minerals phase transitions of soil water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Avetov, S. A. Avetyan, E. I. Dorofeeva, and S. Ya. Trofimov, “Automorphic taiga soils of the Sredneobskaya lowland,” Eur. Soil Sci. 45(7), 651–656 (2012).Google Scholar
  2. 2.
    E. V. Arinushkina, Manual on the Chemical Analysis of Soils (Izd. Mosk. Gos. Univ., Moscow, 1961) [in Russian].Google Scholar
  3. 3.
    R. Kh. Aidinyan, Clay Separation from Soils. A Brief Instruction (Giprovodkhoz, Moscow, 1960) [in Russian].Google Scholar
  4. 4.
    A. A. Velichko, Evolutionary Geography: Problems and Solutions (GEOS, Moscow, 2012) [in Russian].Google Scholar
  5. 5.
    I. M. Gadzhiev and S. M. Ovchinnikov, Middle-Taiga Soils of Western Siberia (Nauka, Sib. otd, Novosibirsk, 1977) [in Russian].Google Scholar
  6. 6.
    G. V. Dobrovol’skii, E. D. Nikitin, and T. V. Afanas’eva, Taiga Pedogenesis in Continental Climate (Western Siberia) (Izd. Mosk. Goh. Univ., Moscow, 1981) [in Russian].Google Scholar
  7. 7.
    L. S. Dolgova and I. P. Gavrilova, “Specific features of soils in the middle and northern taiga subzones of Western Siberia (in Tyumen oblast,” in Environmental Conditions of Western Siberia, Iss. 1 (Izd. Mosk. Gos. Univ., Moscow, 1972), pp. 77–90 [in Russian].Google Scholar
  8. 8.
    N. A. Karavaeva, “Acid eluvial-gley soils of the middle and northern taiga of Western Siberia,” Pochvovedenie, No. 3, 3–18 (1973).Google Scholar
  9. 9.
    Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  10. 10.
    Climatic Reference Book, Iss. 17, Vol. 2 (Leningrad-Omsk, 1968–1972) [in Russian].Google Scholar
  11. 11.
    V. N. Konishchev, V. V. Rogov, and G. N. Shchurina, “The impact of cryogenic processes on clay minerals,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 5, 40–46 (1974).Google Scholar
  12. 12.
    V. N. Konishchev and V. V. Rogov, “The impact of cryogenesis on clay minerals,” Kriosfera Zemli. 12(1), 51–58 (2007).Google Scholar
  13. 13.
    E. A. Kornblyum, T. G. Dement’eva, N. G. Zyrin, and A. G. Birina, “Changes of clay minerals upon the development of southern and vertic chernozems, solod, and solonetz,” Pochvovedenie, No. 1, 107–114 (1972).Google Scholar
  14. 14.
    G. I. Lazukov, “Stages of Pleistocene sedimentation within the Western Siberian Plain,” in Environmental Conditions of Western Siberia, Iss. 1 (Izd. Mosk. Gos. Univ., Moscow, 1971), pp. 6–24 [in Russian].Google Scholar
  15. 15.
    Minerals. Reference Book (Nauka, Moscow, 1992) [in Russian].Google Scholar
  16. 16.
    S. M. Ovchinnikov, T. A. Sokolova, and V. O. Targulian, “Clay minerals in loamy soils of taiga and forest-tundra in Western Siberia,” Pochvovedenie, No. 12, 90–103 (1973).Google Scholar
  17. 17.
    Fundamentals of Geocryology, Vol. 2 (Izd. Mosk. Gos. Univ., Moscow, 1996) [in Russian].Google Scholar
  18. 18.
    D. Yu. Pushcharovskii, Roentgenography of Minerals (Geoinformmark, Moscow, 2000) [in Russian].Google Scholar
  19. 19.
    X-Ray Methods of Studying the Structure of Clay Minerals (Mir, Moscow, 1965) [in Russian].Google Scholar
  20. 20.
    A. A. Rode, Podzolization Process (Izd. Akad. Nauk SSSR, Moscow, 1937) [in Russian].Google Scholar
  21. 21.
    V. O. Targulian and M. I. Gerasimova, World Reference Base for Soil Resources: The Basis for International Classification and Correlation of Soils (Izd. KMK, Moscow, 2007) [in Russian].Google Scholar
  22. 22.
    I. I. Tolpeshta, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2010).Google Scholar
  23. 23.
    I. I. Tolpeshta, T. A. Sokolova, E. Bonifacio, and G. Falcone, “Pedogenic chlorites in podzolic soils with different intensities of hydromorphism: origin, properties, and conditions of their formation,” Eur. Soil Sci. 43(7), 777–787 (2010).Google Scholar
  24. 24.
    V. D. Tonkonogov, Automorphic Pedogenesis in Tundra and Taiga Zones of the East European and Western Siberian Plains (Pochv. Inst. im. V.V. Dokuchaeva, Moscow, 2010) [in Russian].Google Scholar
  25. 25.
    N. M. Fedorova, “Temperature regime of loamy soils on the interfluves of the Sos’va Area in Western Siberia and some aspects of modern pedogenesis,” Pochvovedenie, No. 3, 74–91 (1970).Google Scholar
  26. 26.
    N. M. Fedorova, “On the geocryological conditions of the taiga zone of Western Siberia,” in Water and Temperature Regimes of Soils (Nauch. Tr. Pochv. Inst im. V.V. Dokuchaeva, Moscow, 1974), pp. 141–153 [in Russian].Google Scholar
  27. 27.
    N. M. Fedorova and E. A. Yarilova, “Hydrothermic regime and morphology of loamy soils in the middle taiga of Western Siberia,” Pochvovedenie, No. 7, 79–88 (1972).Google Scholar
  28. 28.
    V. Ya. Khrenov, Soils of the Western Siberian Cryolithozone (Nauka, Novosibirsk, 2011) [in Russian].Google Scholar
  29. 29.
    N. A. Tsytovich, Z. A. Nersesova, A. N. Bozhenova, and I. A. Tyutyunov, “On physical phenomena and processes in freezing and thawing soils,” in Materials of Laboratory Studies of Frozen Grounds, Iss. 3 (Izd. Akad. Nauk SSSR, Moscow, 1957) [in Russian].Google Scholar
  30. 30.
    N. P. Chizhikova, “Problems of genetic interpretation of data on the mineralogical composition of the clay fraction of soils,” in Problems of Soil Science (Nauka, Moscow, 1981), pp. 184–188 [in Russian].Google Scholar
  31. 31.
    N. A. Shpolyanskaya, “Major regularities of permafrost distribution in Western Siberia and the stages of its development,” in Environmental Conditions of Western Siberia, Iss. 1 (Izd. Mosk. Gos. Univ., Moscow, 1971), pp. 102–123 [in Russian].Google Scholar
  32. 32.
    D. M. Anderson and P. Hoekstra, “Migration of interlamellar water during freezing and thawing of Wyoming bentonite,” Soil Sci. Soc. Am. Proc. 29(5), 498–504 (1965).CrossRefGoogle Scholar
  33. 33.
    J. B. Dixon and D. G. Schulze (Eds.), Soil Mineralogy with Environmental Application (Madison, WI, USA, 2002).Google Scholar
  34. 34.
    W. R. Fischer, “Einfluß von frieren und tauen auf glimmer und orthoclas,” Z. Pflazenährn. Düng., Bodenk. Nos. 1–2, 37–40 (1972).Google Scholar
  35. 35.
    K. Norrish and J. A. Raussel-Colom, “Effect of freezing on the swelling of clay minerals,” Clay Miner. Bull, No. 1, 9–16 (1962).Google Scholar
  36. 36.
    M. A. Vicente, M. Razzaghe, and M. Robert, “Formation of aluminium hydroxyl vermiculite (intergrade) and smectite from mica under acidic conditions,” Clay Miner. 12, 101–111 (1977).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of GeographyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations