Advertisement

Eurasian Soil Science

, Volume 47, Issue 7, pp 707–722 | Cite as

Modern approaches to remediation of heavy metal polluted soils: A review

  • G. N. KoptsikEmail author
Degrdation, Rehabiltation, and Conservation of Soils

Abstract

The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

Keywords

washing stabilization phytoremediation natural restoration liming phosphorite application sorbents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    Yu. V. Alekseev, Heavy Metals in Soils and Plants (VO “Agropromizdat”, Leningrad, 1987) [in Russian].Google Scholar
  2. 2.
    Biological Remediation and Monitoring of Industry-Disturbed Lands, compiled by N. V. Lukina, T. S. Chibrik, M. A. Glazyrina, and E. I. Filimonov (Yekaterinburg, 2008) [in Russian].Google Scholar
  3. 3.
    Great Soviet Encyclopedia (Sovetskaya Entsikloped., Moscow, 1969–1978) [in Russian].Google Scholar
  4. 4.
    Yu. N. Vodyanitskii, “The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications,” Eur. Soil Sci. 43(5), 519–532 (2010).Google Scholar
  5. 5.
    Yu. N. Vodyanitskii, D. V. Ladonin, and A. T. Savichev, Soil Contamination with Heavy Metals (Moscow, 2012) [in Russian].Google Scholar
  6. 6.
    E. L. Vorobeichik, O. F. Sadykov, and M. G. Farafontov, Ecological Norming of Technogenic Pollution of Terrestrial Ecosystems (Local Level) (UIF “Nauka”, Yekaterinburg, 1994) [in Russian].Google Scholar
  7. 7.
    I. N. Gogotov, S. V. Belonozhkin, R. S. Khodakov, and A. N. Shkidchenko, “Biosurfactants: producers, properties, and practical application,” Mater. 3rd Intern. Conf. International Cooperation in Biotechnologies: Expectations and Reality (ITs “Bioresursy i ekologiya,” Pushchino, 2006), pp. 104–111 [in Russian].Google Scholar
  8. 8.
    G. A. Evdokimova, Ecological and Microbiological Basics of Soil Protection in the Extreme North (Izd. KNTs RAN, Apatity, 1995) [in Russian].Google Scholar
  9. 9.
    G. A. Evdokimova, G. V. Kalabin, and N. P. Mozgova, “Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel enterprise,” Eur. Soil Sci. 44(2), 237–244 (2011).Google Scholar
  10. 10.
    V. S. Egorov, D. D. Gosse, and A. V. Kurakov, “The effect of sorbents on the agrochemical and microbiological properties of a soddy-podzolic soil contaminated with lead and its uptake by plants,” Agrokhimiya, No. 9, 62–69 (2005).Google Scholar
  11. 11.
    A. Zaid, H. G. Hughes, E. Porceddu, and F. Nicholas, Glossary of Biotechnology for Food and Agriculture (FAO Res. Techn. Paper 9) (FAO, Rome, 2001).Google Scholar
  12. 12.
    A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, USA, 1985).Google Scholar
  13. 13.
    L. P. Kapel’kina, “Technological aspects of the rehabilitation of disturbed landscapes of the North,” in Development of the North and Reclamation Problems Materials of the Third Intern. Conf., (Syktyvkar, 1996), pp. 54–56 [in Russian].Google Scholar
  14. 14.
    L. P. Kapel’kina, Ecological Aspects of the Optimization of Technogenic Landscapes (Nauka, St. Petersburg, 1993) [in Russian].Google Scholar
  15. 15.
    L. P. Kapel’kina and L. A. Kazakov, “Forest reclamation of disturbed lands in the subpolar region,” Lesn. Khoz., No. 2, 27–29 (1989).Google Scholar
  16. 16.
    G. M. Kashulina, Aerotchnogenic Transformation of Soils in the European Subarctic Region (Izd. KNTs RAN, Apatity, 2002) [in Russian].Google Scholar
  17. 17.
    G. N. Koptsik, S. V. Koptsik, S. Yu. Livantsova, and I. E. Smirnova, “Remediation of Soils contaminated with heavy metals via their in situ washing,” Ekolog. Vestn. Sev. Kavkaza 6(2), 26–30 (2010).Google Scholar
  18. 18.
    G. N. Koptsik, S. V. Koptsik, N. V. Lukina, L. G. Isaeva, I. V. Ermakov, I. E. Smirnova, S. Yu. Livantsova, “Approbation of the CLEANSOIL technology to remediate the soils contaminated with heavy metals.” in Ecological Problems of Northern Regions and Their Solutions Mater. All-Russia Conf. (Apatity, 2008), Part 2, pp. 57–60 [in Russian].Google Scholar
  19. 19.
    G. N. Koptsik, S. V. Koptsik, and I. E. Smirnova, “Efficiency of remediation of technogenic barrens near the Pechenganikel smelter in the Kola subarctic,” Pochvovedenie, No. 10, 1263–1273 (2013) [in Russian].Google Scholar
  20. 20.
    G. N. Koptsik, N. P. Nedbaev, S. V. Koptsik, and I. N. Pavlyuk, “Heavy metal pollution of forest soils by atmospheric emissions of Pechenganikel smelter,” Eur. Soil Sci. 31(8), 896–903 (1998).Google Scholar
  21. 21.
    V. A. Korolev, Soil Purification (MAIK “Nauka/Interperiodika”, Moscow, 2001) [in Russian].Google Scholar
  22. 22.
    V. V. Kryuchkov, “Reclamation of disturbed lands in the North,” Priroda, No. 7, 68–77 (1985).Google Scholar
  23. 23.
    L. A. Lebedeva, S. N. Lebedev, N. L. Edemskaya, and G. A. Grafskaya, “The effect of liming and organic fertilizers on the cadmium content of plants,” Agrokhimiya, No. 10, 45–51 (1997).Google Scholar
  24. 24.
    Forest Ecosystems and Air Pollution, Ed. by V. A. Alekseev (Nauka, Leningrad, 1990) [in Russian].Google Scholar
  25. 25.
    G. I. Makhonina, Ecological Aspects of Soil Formation in Technogenic Ecosystems of the Urals (Izd. Ural’sk. Gos. Univ., Yekaterinburg, 2003) [in Russian].Google Scholar
  26. 26.
    G. V. Motuzova, Soil Tolerance toward Chemical Impacts (Izd. Mosk. Gos. Univ., Moscow, 2000) [in Russian].Google Scholar
  27. 27.
    A. N. Nebol’sin and Z. P. Nebol’sina, Soil Liming (the Results of 50-year-long Field Experiments) (NIISKh Rossel’khozakademii, St. Petersburg, 2010) [in Russian].Google Scholar
  28. 28.
    A. N. Nebol’sin and Z. P. Nebol’sina, Theoretical Bases of Soil Liming (LNIISKh, St. Petersburg, 2005) [in Russian].Google Scholar
  29. 29.
    V. V. Nikonov, N. V. Lukina, L. G. Isaeva, T. T. Gorbacheva, E. A. Belova, “Rehabilitation of the territory disturbed by air pollution from the copper-nickel plants in the Kola Peninsula,” in Innovative Potential of the Kola Peninsula (Izd. KNTs RAN, Apatity, 2005), Vol. 2, pp. 284–288 [in Russian].Google Scholar
  30. 30.
    A. I. Obukhov, “Ecological consequences of soil pollution with heavy metals and mitigration measures,” in The Behavior of Pollutants in Soils and Landscapes (Pushchino, 1990), pp. 52–59 [in Russian].Google Scholar
  31. 31.
    M. M. Ovcharenko, N. A. Shil’nikova, D. K. Polyakova, G. A. Grafskaya, A. V. Ivanov, N. K. Sopil’nyak, “The effect of liming and soil acidity on the uptake of heavy metals by plants,” Agrokhimiya, No. 1, 74–84 (1996).Google Scholar
  32. 32.
    I. V. Perminova, “Humic substances — a challenge to chemists of the 21st century,” Khimiya Zhizn’, No. 1, 50–55 (2008).Google Scholar
  33. 33.
    D. L. Pinskii, Ion-Exchange Processes in Soils (Pushchino, 1997) [in Russian].Google Scholar
  34. 34.
    L. S. Sadovnikova and M. V. Kasatikov, “The effect of sewage sludge and lime on the mobility of heavy metal compounds in a soddy-podzolic soil,” Agrokhimiya, No. 6, 81–88 (1995).Google Scholar
  35. 35.
    I. E. Smirnova, I. V. Ermakov, Ya. V. Shevchenko, and G. N. Koptsik, “Assessment of the possibility of using sorbents to reclaim contaminated soils in static adsorption experiments,” in Modern Problems of Soil Pollution Mater. 2nd Intern. Conf. (Moscow, 2007), Vol. 2, pp. 323–327 [in Russian].Google Scholar
  36. 36.
    W. H. Smith, Air Pollution and Forests: Interactions between Air Contaminants and Forest Ecosystems (Springer, New York, 1981).Google Scholar
  37. 37.
    T. A. Sokolova, Chemical Bases of Reclamation of Acid Soils (Izd. Mosk. Gos. Univ., Moscow, 1993) [in Russian].Google Scholar
  38. 38.
    Chemistry of Heavy Metals, Arsenic, and Molybdenum in Soils, ed. by N. G. Zyrin and L. K. Sadovnikova (Izd. Mosk. Gos. Univ., Moscow, 1985) [in Russian].Google Scholar
  39. 39.
    V. F. Tsvetkov and E. A. Cherkizov, “An experience in forest reclamation of land in the impact zone of industrial emissions in the Kola Peninsula,” in Impact of Industrial Enterprises on the Environment (Nauka, Moscow, 1987), pp. 112–119 [in Russian].Google Scholar
  40. 40.
    A. S. Yakovlev, I. O. Plekhanova, S. V. Kudryashov, and R. A. Aimaletdinov, “Assessment and regulation of the ecological state of soils in the impact zone of mining and metallurgical enterprises of Norilsk Nickel company,” Eur. Soil Sci. 401(6), 648–659 (2008).Google Scholar
  41. 41.
    O. Abollino, A. Giacomino, M. Malandrino, and E. Mentasti, “Interaction of metal ions with montmorillonite and vermiculite,” Appl. Clay Sci. 38, 227–236 (2008).Google Scholar
  42. 42.
    O. Abollino, A. Giacomino, M. Malandrino, and E. Mentasti, “The efficiency of vermiculite as natural sorbent for heavy metals. application to a contaminated soil,” Water Air Soil Pollut. 181, 149–160 (2007).Google Scholar
  43. 43.
    D. C. Adriano, W. W. Wenzel, J. Vangronsveld, and N. S. Bolan, “Role of assisted natural remediation in environmental cleanup,” Geoderma 122, 121–142 (2004).Google Scholar
  44. 44.
    S. Al-Asheh and Z. Duvnjak, “Binary metal sorption by pine bark: study of equilibria and mechanisms,” Sep. Sci. Technol. 33, 1303–1329 (1998).Google Scholar
  45. 45.
    S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, “A review of potentially low costs sorbents for heavy metals,” Water Res. 33(11), 2469–2479 (1999).Google Scholar
  46. 46.
    I. M. Banat, R. S. Makkar, and S. S. Cameotra, “Potential commercial applications of microbial surfactants,” Appl. Microbiol. Biotechnol. 53, 495–508 (2000).Google Scholar
  47. 47.
    N. T. Basta and S. L. McGowen, “Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil,” Environ. Pollut. 127, 73–82 (2004).Google Scholar
  48. 48.
    L. Beesley, E. Moreno-Jiménez, J. L. Gomez-Eyles, E. Harris, B. Robinson, T. Sizmur, “A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils,” Environ. Pollut. 159, 3269–3282 (2011).Google Scholar
  49. 49.
    W. Berti and S. Cunningham, “Phytostabilization of metals,” in Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, ed. by I. Raskin and B. D. Ensley (John Wiley & Sons Inc., New York, 2000), pp. 71–88.Google Scholar
  50. 50.
    M. J. Blaylock and J. W. Huang, “Phytoextraction of metals,” in Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, ed. by I. Raskin and B. D. Ensley (John Wiley & Sons Inc., New York, 2000), pp. 53–70.Google Scholar
  51. 51.
    N. S. Bolan, D. C. Adriano, and R. Naidu, “Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system,” Rev. Environ. Contam. Toxicol. 177, 1–44 (2003).Google Scholar
  52. 52.
    N. S. Bolan and V. P. Duraisamy, “Role of inorganic and organic soil amendments on immobilization and phytoavailability of heavy metals: a review involving specific case studies,” Aust. J. Soil Res. 41, 533–555 (2003).Google Scholar
  53. 53.
    P. K. Chaturvedi, C. S. Seth, and V. Misra, “Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite),” Chemosphere 64, 1109–1114 (2006).Google Scholar
  54. 54.
    M. Chen, L. Q. Ma, S. P. Singh, R. X. Cao, R. Melamed, “Field demonstration of in situ immobilization of soil Pb using P amendments,” Adv. Environ. Res. 8, 93–102 (2003).Google Scholar
  55. 55.
    X. Chen, J. V. Wright, J. L. Conca, and L. M. Peurrung, “Evaluation of heavy metal remediation using mineral apatite,” Water Air Soil Pollut. 98, 57–78 (1997).Google Scholar
  56. 56.
    Y. W. Chiang, R. M. Santos, K. Ghyselbrecht, V. Cap- puyns, J. A. Martens, R. Swennen, T. Van Gerven, B. Meesschaert, “Strategic selection of an optimal sorbent mixture for in-situ remediation of heavy metal contaminated sediments: framework and case study,” J. Environ. Manag. 105, 1–11 (2012).Google Scholar
  57. 57.
    N. Chubar, J. R. Carvalho, and M. J. N. Correia, “Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II),” Colloids Surf., A 230, 57 (2004).Google Scholar
  58. 58.
    A. B. Cundy, L. Hopkinson, and R. L. D. Whitby, “Use of iron-based technologies in contaminated land and groundwater remediation: a review,” Sci. Total Environ. 400, 42–51 (2008).Google Scholar
  59. 59.
    S. D. Cunningham and D. W. Ow, “Promises and prospects of phytoremediation,” Plant Physiol. 110, 715–719 (1996).Google Scholar
  60. 60.
    G. Dermont, M. Bergeron, G. Mercier, and M. Richer-Laflèche, “Soil washing for metal removal: a review of physical/chemical technologies and field applications,” J. Hazard. Mater. 152, 1–31 (2008).Google Scholar
  61. 61.
    J. Derome and A. Saarsalmi, “The effect of liming and correction fertilisation on heavy metal and macronutrient concentrations in soil solution in heavy-metal polluted Scots pine stands,” Environ. Pollut. 104, 249–259 (1999).Google Scholar
  62. 62.
    Emerging Technologies for the Remediation of Metals in Soils. In Situ Stabilization / In-Place Inactivation (Interstate Technology and Regulatory Cooperation Work Group, Metals in Soils Work Team, 1997).Google Scholar
  63. 63.
    M. Farrell, W. T. Perkins, P. J. Hobbs, G. W. Griffith, D. L. Jones, “Migration of heavy metals in soil as influenced by compost amendments,” Environ. Pollut. 158, 55–64 (2010).Google Scholar
  64. 64.
    H. Felix, “Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants,” Z. Pflanzen. Bodenk. 160(4), 525–529 (1997).Google Scholar
  65. 65.
    Y. Feng, J.-L. Gong, G.-M. Zeng, Q.-Y. Niu, H.-Y. Zhang, C.-G. Niu, J-H. Deng, M. Yan, “Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents,” Chem. Eng. J. 162, 487–494 (2010).Google Scholar
  66. 66.
    M. Furukawa and S. Tokunaga, “Extraction of heavy metals from a contaminated soil using citrate-enhancing extraction by pH control and ultrasound application,” J. Env. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Engin., 39(3), 627–638 (2004).Google Scholar
  67. 67.
    D. J. Glass, “Economic potential of phytoremediation,” in Phytoremediation of Toxic Metals: Using Plants to Clean-Up the Environment, ed. by I. Raskin and B. D. Ensley (John Wiley & Sons Inc., New York, 2000), pp. 15–32.Google Scholar
  68. 68.
    R. González-Nu-ñez, M. D. Alba, M. M. Orta, M. Vidal, A. Rigol, “Remediation of metal-contaminated soils with the addition of materials-part II: leaching tests to evaluate the efficiency of materials in the remediation of contaminated soils,” Chemosphere 87, 829–837 (2012).Google Scholar
  69. 69.
    L. K. Grønflaten, L. Amundsen, J. Frank, and E. Steinnes, “Influence of liming and vitality fertilization on trace element concentrations in Scots pine forest soil and plants,” Forest Ecol. Manag. 213, 261–272 (2005).Google Scholar
  70. 70.
    G. Guo, Q. Zhou, and L. Q. Ma, “Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: a review,” Environ. Monit. Assess. 116, 513–528 (2006).Google Scholar
  71. 71.
    Handbook of Ecotoxicology, ed. by D. J. Hoffman, B. A. Rattner, G. A. Burton, and J. Cairns (CRC Press, Boca Raton, 2003).Google Scholar
  72. 72.
    J. Hargreaves, A. Lock, P. Beckett, G. Spiers, B. Tisch, L. Lanteigne, T. Posadowski, M. Soenens, “Suitability of an organic residual cover on tailings for bioenergy crop production: a preliminary assessment,” Can. J. Soil. Sci. 92, 203–211 (2012).Google Scholar
  73. 73.
    Heavy Metals in Soils ed. by B. J. Alloway (Wiley & Sons, New York, 1990).Google Scholar
  74. 74.
    Y. S. Ho, J. F. Porter, and G. McKay, “Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems,” Water Air Soil Pollut. 141, 1–33 (2002).Google Scholar
  75. 75.
    P. K. A. Hong, C. Li, S. K. Banerji, and T. Regmi, “Extraction, recovery, and biostability of EDTA for remediation of heavy metal-contaminated soil,” J. Soil Contam. 8(1), 81–103 (1999).Google Scholar
  76. 76.
    M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, “Heavy metal removal from water/wastewater by nanosized metal oxides: a review,” J. Hazard. Mater. 211–212, 317–331 (2012).Google Scholar
  77. 77.
    A. S. Hursthouse, “The relevance of speciation in the remediation of soils and sediments contaminated by metallic elements-an overview and examples from central Scotland, UK,” J. Environ. Monit. 3(1), 49–60 (2001).Google Scholar
  78. 78.
    V. Illera, F. Garrido, S. Serrano, and M. T. Garsia-Gonzalez, “Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial byproducts,” Eur. J. Soil Sci. 55, 135–145 (2004).Google Scholar
  79. 79.
    M. Isoyama and Sh.-I. Wada, “Remediation of Pbcontaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil,” J. Hazard. Mater 143, 636–642 (2007).Google Scholar
  80. 80.
    L. Jean, F. Bordas, and J.-C. Bollinger, “Chromium and nickel mobilization from a contaminated soil using chelants,” Environ. Pollut. 147, 729–736 (2007).Google Scholar
  81. 81.
    A. A. Kamnev and D. van der Lelie, “Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation,” Biosci. Rep. 20(4), 239–258 (2000).Google Scholar
  82. 82.
    O. Kiikkilä, “Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SW Finland,” Silva Fennica 37 (3), 399–415 (2003).Google Scholar
  83. 83.
    M. G. Klimantavièiûtë, D. Virbalytë, V. Pakðtas, R. Juðkënas, and A. Pigaga, “Interaction of heavy metal ions with cement kiln dust,” Ekologija 1, 31 (2005).Google Scholar
  84. 84.
    M. Komárek, A. Vaněk, and V. Ettler, “Chemical stabilization of metals and arsenic in contaminated soils using oxides — a review,” Environ. Pollut. 172, 9–22 (2013).Google Scholar
  85. 85.
    S. Koptsik, G. Koptsik, S. Livantsova, L. Eruslankina, T. Zhmelkova, Zh. Vologdina, “Heavy metals in soils near the nickel smelter: chemistry, spatial variation, and impacts on plant diversity,” J. Environ. Monit. 5, 441–450 (2003).Google Scholar
  86. 86.
    M. V. Kozlov and E. L. Zvereva, “Industrial barrens: extreme habitats created by non-ferrous metallurgy,” Rev. Environ. Sci. Biotechnol. 6, 231–259 (2007).Google Scholar
  87. 87.
    R. Kucharski, A. Sas-Nowosielska, E. Malkowski, J. Japenga, J. M. Kuperberg, M. Pogrzeba, J. Krzyzak, “The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland,” Plant Soil 273, 291–305 (2005).Google Scholar
  88. 88.
    P. B. A. N. Kumar, V. Dushenkov, H. Motto, and I. Raskin, “Phytoextraction: the use of plants to remove heavy metals from soils,” Environ. Sci. Technol. 29, 1232–1238 (1995).Google Scholar
  89. 89.
    M. Kyncl, H. Pavolová, and K. Kysel’ová, “Using untraditional sorbents for sorption of certain heavy metals from waste water,” GeoSci. Engin. LIV (2), 26–31 (2008).Google Scholar
  90. 90.
    S. Kuo, M. S. Lai, and C. W. Lin, “Influence of solution acidity and CaCl2 Concentration on the removal of heavy metals from metal-contaminated rice soils,” Environ. Pollut. 144, 918–925 (2006).Google Scholar
  91. 91.
    M. M. Lasat, “Phytoextraction of toxic metals: a review of biological mechanisms,” J. Environ. Qual. 31(1), 109–120 (2002).Google Scholar
  92. 92.
    M.-G. Lee, J.-K. Cheon, and S.-K. Kam, “Heavy metal adsorption characteristics of zeolite synthesized from fly ash,” J. Ind. Eng. Chem 9(2), 174–180 (2003).Google Scholar
  93. 93.
    C. Lin, M. W. Clark, D. M. McConchie, G. Lancaster, N. Ward, “Effects of BauxsolTM on the immobilisation of soluble acid and environmentally significant metals in acid sulfate soils,” Aust. J. Soil Res. 40, 805–815 (2002).Google Scholar
  94. 94.
    W. L. Lindsay, Chemical Equilibria in Soil (John Wiley and Sons, New-York, Chichester, Brisbane, Toronto, 1979).Google Scholar
  95. 95.
    E. Lombi and R. E. Hamon, “Remediation of polluted soils,” Encyclopedia of Soils in the Environment, ed. by D. Hillel (Elsevier Ltd, Oxford, 2005), pp. 379–385.Google Scholar
  96. 96.
    B. Lothenbach, G. Furrer, and R. Schulin, “Immobilization of heavy metals by polynuclear aluminium and montmorillonite compounds,” Environ. Sci. Technol. 31, 1452–1462 (1997).Google Scholar
  97. 97.
    G. Maddocks, C. Lin, and D. McConchie, “Effects of BauxsolTM and biosolids on soil conditions of acidgenerating mine spoil for plant growth,” Environ. Pollut. 127, 157–167 (2004).Google Scholar
  98. 98.
    E. Madejón, P. Madejon, P. Burgos, A. Pérez de Mora, F. Cabrera, “Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: a 4-year field study,” J. Hazard. Mater. 162, 931–938 (2009).Google Scholar
  99. 99.
    F. Madrid, E. Díaz-Barrientos, M. C. Florido, and L. Madrid, “Inorganic amendments to decrease metal availability in soils of recreational urban areas: limitations to their efficiency and possible drawbacks,” Water Air Soil Pollut. 192(1), 117–125 (2012).Google Scholar
  100. 100.
    E. Mälkönen, J. Derome, H. Fritze, H.-S. Helmisaari, M. Kukkola, M. Kytö, A. Saarsalmi, M. Salemaa, “Compensatory fertilization of Scots pine stands polluted by heavy metals,” Nutr. Cycl. Agroecosyst. 55, 239–268 (1999).Google Scholar
  101. 101.
    G. Mancini, A. Polettini, R. Pomi, and M. Bruno, “Effects of metals fractionation on chelant-assisted soil flushing,” Proc. Int. Conf. BOSICON (Rome, 2009), pp. 1–14.Google Scholar
  102. 102.
    M. Marinkovski, L. Markovska, and V. Meshko, “Equilibrium studies of Pb(II), Zn(II) and Cd(II) ions onto granular activated carbon and natural zeolite,” in Chemicals as Intentional and Accidental Global Environmental Threats, ed. by L. Simeonov and E. Chirila (Springer, 2006), pp. 477–486.Google Scholar
  103. 103.
    E. Mavropoulos, A. M. Rossi, A. M. Costa, C. A. C. Perez, J. C. Moreira, and M. Saldanha, “Studies on the mechanisms of lead immobilization by hydroxyapatite,” Environ. Sci. Technol. 36, 1625–1629 (2002).Google Scholar
  104. 104.
    N. Meunier, J. F. Blais, and R. D. Tyagi, “Selection of a natural sorbent to remove toxic metals from acidic leachate produced during soil decontamination,” Hydrometallurgy 67, 19–30 (2002).Google Scholar
  105. 105.
    L. Montanarella, “The EU thematic strategy on soil protection,” in First European Summer School on Soil Survey, ed. by R. J. A. Jones, L. Montanarella, and S.-K. Selvaradjou, (ESB, IES, JRC-EU, Ispra, 2003), pp. 275–288.Google Scholar
  106. 106.
    L. Montanarella, Trends in Land Degradation in Europe (Arusha, JRC-EU, 2006) [eusoils.jrc.ec. europa, eu].Google Scholar
  107. 107.
    C. N. Mulligan, R. N. Yong, and B. F. Gibbs, “Remediation technologies for metal-contaminated soils and groundwater: an evaluation,” Engin. Geol. 60, 193–207 (2001).Google Scholar
  108. 108.
    N. C. Munksgaard and B. G. Lottermoser, “Fertilizer amendment of mining-impacted soils from Broken Hill, Australia: fixation or release of contaminants?,” Water Air Soil Pollut. 215(1–4), 373–397 (2011).Google Scholar
  109. 109.
    J. W. Neilson, J. F. Artiola, and R. M. Maier, “Characterization of lead removal from contaminated soils by nontoxic soil-washing agents,” J. Environ. Qual. 32, 899–908 (2003).Google Scholar
  110. 110.
    O. I. Nwachukwu and I. D. Pulford, “Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copperand zinc-contaminated soil,” Soil Use Manag. 24(2), 199–207 (2008).Google Scholar
  111. 111.
    D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, “Nanoscale zero valent iron and bimetallic particles for contaminated site remediation,” Adv. Water Res. 51, 104–122 (2013).Google Scholar
  112. 112.
    J. Oliva, J. De Pablo, J.-L. Cortina, J. Cama, C. Ayora, “Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite IITM: column experiments,” J. Hazard. Mater. 194, 312–323 (2011).Google Scholar
  113. 113.
    P. K. Padmavathiamma and L. Y. Li, “Phytoremediation technology: hyper-accumulation metals in plants,” Water Air Soil Pollut. 184, 105–126 (2007).Google Scholar
  114. 114.
    J. H. Park, D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, J.-W. Chungd, “Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils,” J. Hazard. Mater. 185, 549–574 (2011).Google Scholar
  115. 115.
    M. N. V. Prasad and H. M. O. Freitas, “Metal hyperaccumulation in plants — biodiversity prospecting for phytoremediation technology,” Electr. J. Biotechnol. 6(3), 285–321 (2003).Google Scholar
  116. 116.
    X. Querol, A. Alastuey, N. Moreno, E. Alvarez-Ayuso, A. García-Sánchez, J. Cama, C. Ayora, M. Simón, “Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash,” Chemosphere 62((2)), 171–80 (2006).Google Scholar
  117. 117.
    S. Raicevic, T. Kaludjerovic-Radoicic, and A. I. Zouboulis, “In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification,” J. Hazard. Mater. 117(1), 41–53 (2005).Google Scholar
  118. 118.
    M. Rao, A. V. Parwate, and A. G. Bhole, “Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash,” Waste Manag. 22(7), 821–830 (2002).Google Scholar
  119. 119.
    Recent Developments for in Situ Treatments of Metal Contaminated Soils (US EPA, Office of Solid Waste and Emergency Response, Technology Innovation Office, Washington DC, 2004).Google Scholar
  120. 120.
    Regreening Greater Sudbury. Annual Report 2008, Land Reclamation Program, 30th Anniv. Ed., 1978–2008 (VETAC, 2008).Google Scholar
  121. 121.
    B. H. Robinson, R. R. Brooks, A. W. Howes, J. H. Kirkman, P. E. H. Gregg, “The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining,” J. Geochem. Explor. 60, 115–126 (1997).Google Scholar
  122. 122.
    B. Robinson, J.-E. Fernández, P. Madejón, T. Marañón, J. M. Murillo, S. Green, B. Clothier, “Phytoextraction: an assessment of biogeochemical and economic viability,” Plant Soil 249, 117–125 (2003).Google Scholar
  123. 123.
    L. Santona, P. Castaldi, and P. Melis, “Evaluation of the interaction mechanisms between red muds and heavy metals,” J. Hazard. Mater. 136(2), 324–329 (2006).Google Scholar
  124. 124.
    J. Scullion, “Remediating polluted soils,” Naturwis-senschaften 93, 51–65 (2006).Google Scholar
  125. 125.
    T. K. Sen, S. P. Mahajan, and K. C. Khilar, “Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media,” Colloid. Surf. A: Physicochem. Engin. Aspects 211, 91–102 (2002).Google Scholar
  126. 126.
    W. Shi, H. Shao, H. Li, M. Shao, S. Du, “Progress in the remediation of hazardous heavy metal-polluted soils by natural Zeolite,” J. Hazard. Mater. 170, 1–6 (2009).Google Scholar
  127. 127.
    G. Siebielec, R. L. Chaney, and U. Kukier, “Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration,” Plant Soil 299, 117–130 (2007).Google Scholar
  128. 128.
    SUMATECS. Sustainable Management of Trace Element Contaminated Soils-Development of a Decision Tool System and Its Evaluation for Practical Application. Final Research Report, ed. by M. Puschenreiter (Univ. Bodenkultur, Vienna, 2008).Google Scholar
  129. 129.
    G. Tyler and T. Olsson, “Plant uptake of major and minor mineral elements as influenced by soil acidity and liming,” Plant Soil 230, 307–321 (2001).Google Scholar
  130. 130.
    T. K. Udeigwe, P. N. Eze, J. M. Teboh, and M. H. Stietiya, “Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality,” Environ. Intern. 37, 258–267 (2011).Google Scholar
  131. 131.
    M. Udovic and D. Lestan, “EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact,” Chemosphere 88, 718–724 (2012).Google Scholar
  132. 132.
    Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and. Underground Storage Tank Sites, U.S. EPA OSWER Directive 9200 (Washington DC, 1999).Google Scholar
  133. 133.
    M. W. Wan, I. G. Petrisor, H. T. Lai, D. Kim, T. F. Yen, “Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ soil decontamination,” Carbohydr. Polymers 55, 249 (2004).Google Scholar
  134. 134.
    K. Winterhalder, “Environmental degradation and rehabilitation of landscape around sudbury, a major mining and smelting area,” Environ. Reviews 4, 185–224 (1996).Google Scholar
  135. 135.
    S. Yuan, Z. Xi, Y. Jiang, J. Wan, C. Wu, Z. Zheng, X. Lu, “Desorption of copper and cadmium from soils enhanced by organic acids,” Chemosphere 68, 1289–1297 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Faculty of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations