Eurasian Soil Science

, Volume 47, Issue 2, pp 57–69 | Cite as

Hydrocarbon contamination of arctic tundra soils of the Bol’shoi Lyakhovskii Island (the Novosibirskie Islands)

  • V. L. Kachinskii
  • Yu. A. Zavgorodnyaya
  • A. N. Gennadiev
Soil Chemistry


Data on the distribution of the components of oil products that have accumulated in the arctic tundra soils of the Bol’shoi Lyakhovskii Island (the Novosibirskie Islands) under the impact of technogenic loads are analyzed. The examined soils differ in the vertical and lateral distribution patterns of the methanenaphthenic and naphthenic hydrocarbons and in the degree of their transformation. This is determined by the position of particular soils in the catenas and by the sorption of particular hydrocarbon compounds in the soils. The portion of light molecular-weight hydrocarbons in the upper horizons decreases by two-ten times in comparison with the deeper soil layers. In the lateral direction, the twofold difference in the contents of the methane-naphthenic and naphthenic hydrocarbons in the upper horizons is seen. The degree of transformation of the hydrocarbons under the impact of microbiological processes depends on the aeration conditions, the depth of permafrost table, the composition of oil products, and the soil organic matter content.


oil products technogenic pollution vertical and lateral distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Anan’eva, D. S. Drozdov, A. Instanes, and E. M. Chuvilin, “Oil pollution of the active layer and upper permafrost on the Mys Bovanskii key plot in the Pechora River mouth,” Kriosfera Zemli 7(1), 49–59 (2003).Google Scholar
  2. 2.
    E. M. Anchugova, M. Yu. Markarova, T. N. Shchemelinina, and V. V. Volodin, “Specific features of the vertical distribution of hydrocarbons in soil substrates,” Izv. Samarsk. Nauch. Ts. RAN 12(1), 1203–1207 (2010).Google Scholar
  3. 3.
    O. K. Bazhenova, Yu. K. Burlin, B. A. Sokolov, and V. E. Khain, Geology and Geochemistry of Oil and Gas (Izd. Mosk. Gos. Univ., Moscow, 2012) [in Russian].Google Scholar
  4. 4.
    L. M. Baryshnikova, V. G. Grishchenkov, M. U. Arinbasarov, et al., “Biodegradation of oil products by strains of decomposers and their associations in liquid media,” Prikl. Biokhim. Mikrobiol. 37(5), 542–548 (2001).Google Scholar
  5. 5.
    E. S. Brodskii, O. L. Butkova, A. A. Shelepchikov, and D. B. Feshin, “Identification of the sources of oil spills in soils and bottom sediments by the method of gas chromatography and mass spectrometry,” Mass-Spektrometriya, No. 7(2), 139–146 (2010).Google Scholar
  6. 6.
    I. R. Galinurov, A. M. Safarov, F. Kh. Kudasheva, et al., “Migration of oil hydrocarbons in the profile of alluvial soils,” Vestn. Bashkir. Univ., 16(1), 47–52 (2011).Google Scholar
  7. 7.
    A. N. Gennadiev, “Oil and the environment,” Vestn. Mosk. Un-Ta, Ser. 5: Geogr., No. 6, 30–39 (2009).Google Scholar
  8. 8.
    A. N. Gennadiev and Yu. I. Pikovskii, “The maps of soil tolerance toward pollution with oil products and polycyclic aromatic hydrocarbons: methodological aspects,” Eur. Soil Sci. 40(1), 70–81 (2007).CrossRefGoogle Scholar
  9. 9.
    A. N. Gennadiev, N. P. Solntseva, and M. I. Gerasimova, “On the principles of grouping and nomenclature of technogenically transformed soils,” Pochvovedenie, No. 2, 49–60 (1992).Google Scholar
  10. 10.
    I. M. Gil’deeva, The Effect of Seasonal Freeze-Thaw Processes on the Evolution of Oil Contamination in Arctic Regions, Ed. by V. K. Shimanskii (Nedra, St. Petersburg, 2003) [in Russian].Google Scholar
  11. 11.
    Yu. S. Glyaznetsova, I. N. Zueva, O. N. Chalaya, et al., “The impact of oil destroyers on degradation of oilcontaminated soils in subarctic regions upon accidental spills of the “Arktika” diesel fuel,” Nauka Obrazovan., No. 1, 66–71 (2011).Google Scholar
  12. 12.
    Yu. S. Drugov, I. G. Zenkevich, and A. A. Rodin, Gas-Chromatographic Identification of Water, Air, and Soil Contamination. Practical Manual (Binom, Moscow, 2005) [in Russian].Google Scholar
  13. 13.
    E. D. Ershov, E. M. Chuvilin, O. G. Smirnova, and N. S. Naletova, “Experimental studies of oil interaction with permafrost,” Materials of the 1st Geocryol. Conf. (Moscow, 1996), pp. 153–159 [in Russian].Google Scholar
  14. 14.
    D. V. Zhukov, V. P. Murygina, and S. V. Kalyuzhnyi, “Mechanisms of degradation of oil hydrocarbons by microorganisms,” Usp. Sovrem. Biol. 126(3), 285–296 (2006).Google Scholar
  15. 15.
    I. Z. Ibatullina, T. A. Semenova, and A. S. Yakovlev, “Specific features of oil biodegradation in meadow-chestnut soils of the Stavropol region (model experiment),” Eur. Soil Sci. 45(3), 329–336 (2012).CrossRefGoogle Scholar
  16. 16.
    Inventory of Contamination Sources on the Territory of Former Military Facilities in the Novosibirskie Island. Final Report on Contract NCS-NPA-Arctic-20/2010 from Aug. 31, 2010 (Polyarnyi fond, Moscow, 2010) [in Russian].Google Scholar
  17. 17.
    F. M. Kuznetsov, S. A. Ilarionov, V. V. Seredin, and S. Yu. Ilarionov, Rehabilitation of Oil-Polluted Soils (Perm.Gos. Tekhn. Univ., Perm, 2000) [in Russian].Google Scholar
  18. 18.
    S. Kh. Lifshits, B. M. Kershengol’ts, O. N. Chalaya, et al., “Studies of the capacity of a model permafrost soil-plant system in Yakutia for self-restoration upon oil contamination,” Khim. Interesah Ustoich. Razvit., No. 16, 537–545 (2008).Google Scholar
  19. 19.
    S. Kh. Lifshits, O. N. Chalaya, I. N. Zueva, et al., “Self-restoration capacity of the oil-contaminated permafrost-affected soils of Yakutia,” Nauka Obrazovan., No. 4, 69–74 (2006).Google Scholar
  20. 20.
    E. S. Miklyaeva and F. N. Zepalov, “Specific features of seasonal freezing of soils contaminated with diesel fuel (field experiment in Khimki district of Moscow),” Kriosfera Zemli 12(2), 32–39 (2008).Google Scholar
  21. 21.
    E. S. Miklyaeva and V. A. Soldatov, “Field study of the effect of oil contamination on the seasonal soil freezing in Samotlor oil field,” in Problems of the Development of Oil and Gas Deposits in the Cryolithozone (Materials of the 4th Russian Geocryol. Conf.) (Univers. Kniga, Moscow, 2011), Vol. 3, Part 7, pp. 56–62 [in Russian].Google Scholar
  22. 22.
    Yu. A. Nefed’eva, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2010).Google Scholar
  23. 23.
    A. A. Oborin, V. T. Khmurchik, S. A. Ilarionov, et al., Oil-Contaminated biogeocenoses (UrO RAN, Perm. Gos. Univ., Perm, 2008) [in Russian].Google Scholar
  24. 24.
    A. A. Petrov, Petroleum Hydrocarbons (Nauka, Moscow, 1984) [in Russian].Google Scholar
  25. 25.
    Yu. I. Pikovskii, Natural and Technogenic Fluxes of Hydrocarbons in the Environment (Izd. Mosk. Gos. Univ., Moscow, 1993) [in Russian].Google Scholar
  26. 26.
    E. A. Rogozina, “Geochemical changes in the composition of oil upon its biodegradation,” Razved. Okhr. Nedr, No. 4, 63–68 (2010).Google Scholar
  27. 27.
    D. G. Sidorov, I. A. Borzenkov, E. I. Milekhina, et al., “Microbiological destruction of mazut in soil treated with Devoroil preparation,” Prikl. Biokhim. Mikrobiol. 34(3), 281–286 (1998).Google Scholar
  28. 28.
    E. V. Soboleva, “The composition of chemofossils as indication of the geological and geochemical history of oil,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 2, 29–37 (2003).Google Scholar
  29. 29.
    N. P. Solntseva, Oil Extraction and Geochemistry of the Natural Landscapes (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].Google Scholar
  30. 30.
    N. P. Solntseva, O. A. Guseva, and S. V. Goryachkin, “Modeling of the migration of oil and oil products in tundra soils,” Vest. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 10–17 (1996).Google Scholar
  31. 31.
    E. G. Sotnikova and D. N. Lipatov, “Migration of petroleum hydrocarbons in soils of the northeastern Sakhalin,” Vest. Mosk. Univ., Ser. 17: Pochvoved., No. 1, 35–42 (2010).Google Scholar
  32. 32.
    S. Ya. Trofimov, A. D. Fokin, A. A. Kupryashkin, and E. I. Dorofeeva, “Migration of oil and its components in the profile of oligotrophic peat soil in a model experiment,” Vest. Mosk. Univ., Ser. 17: Pochvoved., No. 1, 25–28 (2008).Google Scholar
  33. 33.
    F. Kh. Khaziev and F. F. Fatkhiev, “Changes in the biochemical processes in oil-contaminated soils and activation of oil decomposition,” Agrokhimiya, No. 10, 102–111 (1981).Google Scholar
  34. 34.
    E. M. Chuvilin and E. S. Miklyaeva, “Field experiment on the assessment of oil contamination in the upper permafrost horizons,” Kriosfera Zemli 9(2), 60–66 (2005).Google Scholar
  35. 35.
    D. M. Filler, I. Snape, and D. L. Barnes (Eds.), Bioremediation of Petroleum Hydrocarbons in Cold Regions (Cambridge Univ. Press, 2008), pp. 109–125.CrossRefGoogle Scholar
  36. 36.
    G. P. Kershaw, “Movement of crude oil in an experimental spill on the seeds simulated pipeline right-of-way, Fort Norman, N.W.T,” Arctic 43(2), 176–183 (1990).Google Scholar
  37. 37.
    C. Osuji Leo, E. Regina, and A. U. Kalu, “The use of pristane and phytane biomarkers: a rethink of the cognoscenti,” Scient. Africana 8(3), 42–52 (2009).Google Scholar
  38. 38.
    R. Margesin and F. Schinner, “Biodegradation and bioremediation of hydrocarbons in extreme environments,” Microbiol Biotechnol. 56, 650–663 (2001).CrossRefGoogle Scholar
  39. 39.
    A. Mosbech, Potential Environmental Impacts of Oil Spills in Greenland. An Assessment of Information Status and Research Needs (NERI Technic. Rep., 2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. L. Kachinskii
    • 1
  • Yu. A. Zavgorodnyaya
    • 2
  • A. N. Gennadiev
    • 1
  1. 1.Geographical FacultyMoscow State UniversityMoscowRussia
  2. 2.Faculty of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations