Eurasian Soil Science

, Volume 47, Issue 5, pp 400–406 | Cite as

Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study)

  • E. D. LodyginEmail author
  • V. A. Beznosikov
  • R. S. Vasilevich
Soil Chemistry


Functional groups and molecular fragments of humic substances (HSs) from cryohydromorphic peat gley tundra and surface-gley tundra soils have been identified by 13C-NMR spectroscopy. The analysis of HS preparations has shown that the molecules of humic acids (HAs) are enriched with aromatic fragments compared to fulvic acids (FAs). Aliphatic chains, carbohydrate- and amino acid-type structures prevail in the carbon skeleton of the FAs. An integrated parameter of the HS hydrophobicity has been proposed. The parameter represents the total portion of unoxidized carbon atoms and allows indirectly assessing the amphiphilic properties of HSs.


humic acids fulvic acids structural and functional parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. B. Archegova, “Specific Features of Humus Formation in Soils of Vorkuta Tundra,” (Syktyvkar, 1972) [in Russian].Google Scholar
  2. 2.
    Atlas of Climate and Hydrology of the Komi Republic, Ed. by A. I. Taskaev (DiK, Drofa, Moscow, 1997) [in Russian].Google Scholar
  3. 3.
    A. V. Baranovskaya, “Specific features of humus formation and composition of humus in soils of the Komi ASSR,” Tr. Komi fil. Akad. Nauk SSSR. Ser. Geogr., No. 1, 113–125 (1952).Google Scholar
  4. 4.
    V. A. Beznosikov and E. D. Lodygin, “Fractional and group composition of humus in the cryogenic surfacegleyed and hydromorphic soils of the Bol’shezemel’skaya tundra,” Vestn. St.-Peterb. Univ., Ser. 3, No. 1, 107–120 (2012).Google Scholar
  5. 5.
    V. D. Vasilevskaya, Soil Formation in Tundra of Central Siberia (Nauka, Moscow, 1980) [in Russian].Google Scholar
  6. 6.
    Geocryological Map of the Soviet Union. Scale 1: 2.5 M, Ed. by E. D. Ershov and K. A. Kondrat’eva (Min. Geol. SSSR-Mosk. Gos. Univ., Moscow, 1998) [in Russian].Google Scholar
  7. 7.
    L. A. Grishina, “Specific features of organic matter in cryogenic soils,” in Problems of Soil Cryogenesis (Izd. Komi fil. Akad. Nauk SSSR, Syktyvkar, 1985), pp. 49–50 [in Russian].Google Scholar
  8. 8.
    M. I. Dergacheva, “Humus memory of soils,” in Soil Memory: Soil as a Memory of Biosphere-Geosphere-Anthroposphere Interactions, (Izd. LKI, Moscow, 2008), pp. 530–560 [in Russian].Google Scholar
  9. 9.
    B. N. Zolotareva, L. A. Fominykh, L. T. Shirshova, and A. L. Kholodov, “The composition of humus in permafrost-affected soils of the Bol’shezemel’skaya and Kolyma tundra areas,” Eur. Soil Sci. 42(1), 36–48 (2009).CrossRefGoogle Scholar
  10. 10.
    E. N. Ivanova and O. A. Polyntseva, “Soils of European Tundras,” Tr. Komi Fil. Akad. Nauk SSSR, Ser. Geogr., No. 1, 72–122 (1952).Google Scholar
  11. 11.
    I. V. Ignatenko, Soils of the East European Tundra and Forest-Tundra, (Nauka, Moscow, 1979) [in Russian].Google Scholar
  12. 12.
    N. A. Karavaeva, Tundra Soils of Northern Yakutia (Nauka, Moscow, 1969) [in Russian].Google Scholar
  13. 13.
    The Map of Quaternary Deposits. Northern Ural Ser., Q-41-V (1: 200000), Ed. by V. S. Enokyan (Mingeo SSSR, 1959) [in Russian].Google Scholar
  14. 14.
    I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eur. Soil Sci. 41(10), 1077–1089 (2011).CrossRefGoogle Scholar
  15. 15.
    E. D. Lodygin and V. A. Beznosikov, “The 13C NMR study of the molecular structure of humus acids from podzolic and bog-podzolic soils,” Eur. Soil Sci. 36(9), 967–975 (2003).Google Scholar
  16. 16.
    E. D. Lodygin, V. A. Beznosikov, and E. V. Vanchikova, “Functional groups of fulvic acids from gleyic peatypodzolic soil,” Eur. Soil Sci. 34(4), 382–386 (2001).Google Scholar
  17. 17.
    D. S. Orlov, Humic Acids of Soils and a General Theory of Humification (Izd. Mosk. Gos. Univ., Moscow, 1990) [in Russian].Google Scholar
  18. 18.
    D. S. Orlov and L. A. Grishina, Practicum on Humus Chemistry (Moscow, 1981) [in Russian].Google Scholar
  19. 19.
    A. I. Popov, Humic Substances: Properties, Structure, and Formation (Izd. SPbGU, St. Petersburg, 2004) [in Russian].Google Scholar
  20. 20.
    L. A. Fominykh, B. N. Zolotareva, and D. L. Pinskii, “A comparative analysis of paleosols in ancient landscapes of northern Russia,” Kriosf. Zemli 14(2), 56–68 (2011).Google Scholar
  21. 21.
    V. A. Kholodov, A. I. Konstantinov, A. V. Kudryavtsev, and I. V. Perminova, “Structure of humic acids in zonal soils from 13C NMR data,” Eur. Soil Sci. 44(9), 976–983 (2011).CrossRefGoogle Scholar
  22. 22.
    G. D. Chimitdorzhieva, “Specific features of the organic matter of cryogenic soils,” Pochvovedenie, No. 11, 125–132 (1991).Google Scholar
  23. 23.
    S. N. Chukov, Structural-Functional Parameters of Soil Organic Matter under Anthropogenic Loads (Izd. SPbGU, St. Petersburg, 2001) [in Russian].Google Scholar
  24. 24.
    J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High-Resolution Nuclear Magnetic Resonance Spectroscopy, (Pergamon, Oxford, 1965).Google Scholar
  25. 25.
    J. A. Baldock and C. M. Preston, “Chemistry of carbon decomposition processes in forests as revealed by solidstate carbon-13 nuclear magnetic resonance,” in Carbon Forms and Functions in Forest Soils, Ed. by W. W. McFee and J. M. Kelly (Soil Sci. Soc. Am., Wisconsin, 1995), pp. 89–117.Google Scholar
  26. 26.
    J. G. Bockheim, “Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils,” Soil Sci. Soc. Am. J. 71, 53–60 (2007).CrossRefGoogle Scholar
  27. 27.
    X. Y. Dai, C. L. Ping, R. Candler, L. Haumaier, W. Zech, “Characterization of soil organic matter fractions of tundra soils in arctic alaska by carbon-13 nuclear magnetic resonance spectroscopy,” Soil Sci. Soc. Am. J. 65, 87–93 (2001).CrossRefGoogle Scholar
  28. 28.
    B. C. Liang, E. G. Gregorich, M. Schnitzer, and H. R. Schulten, “Characterization of water extracts of two manures and their absorption on soils,” Soil Sci. Soc. Am. J. 60, 1758–1763 (1996).CrossRefGoogle Scholar
  29. 29.
    K. Lorenz, C. M. Preston, and E. Kandeler, “Soil organic matter in urban soils: estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy,” Geoderma 130, 312–323 (2006).CrossRefGoogle Scholar
  30. 30.
    J. A. Pedersen, M. A. Simpson, J. G. Bockheim, and K. Kumar, “Characterization of soil organic carbon in drained thaw-lake basins of Arctic Alaska using NMR and FTIR photoacoustic spectroscopy,” Organic Geochem. 42, 947–954 (2011).CrossRefGoogle Scholar
  31. 31.
    C. M. Preston, “Applications of NMR to soil organic matter analysis: history and prospects,” Soil Sci. 161, 144–166 (1996).CrossRefGoogle Scholar
  32. 32.
    A. J. Simpson, J. Burdon, C. L. Graham, M. H. B. Hayes, N. Spencer, W. L. Kingery, “Interpretation of heteronuclear and multidimensional NMR spectroscopy of humic substances,” Europ. J. Soil Sci. 52, 495–509 (2001).CrossRefGoogle Scholar
  33. 33.
    R. S. Swift, Methods of Soil Analysis (Soil Sci. Soc. Am., Madison (WI), 1996), Part 3, pp. 1018–1020.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. D. Lodygin
    • 1
    Email author
  • V. A. Beznosikov
    • 1
  • R. S. Vasilevich
    • 1
  1. 1.Institute of Biology, Komi Scientific CenterUral Branch of the Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations