Advertisement

Eurasian Soil Science

, Volume 46, Issue 2, pp 107–116 | Cite as

The pool of organic carbon in the soils of Russia

  • D. G. Schepaschenko
  • L. V. Mukhortova
  • A. Z. Shvidenko
  • E. F. Vedrova
Genesis and Geography of Soils

Abstract

An automated information system making it possible to estimate spatial distribution of soil organic carbon pool with a high spatial resolution (1 km2) has been developed. According to the obtained estimates, the total pool of organic carbon in the 1-m-deep soil layer on the territory of Russia reaches 317.1 Pg; the average organic carbon density in this layer for the entire Russia constitutes 19.2 kg C/m2. Of this amount, 14.4 Pg (or 0.90 kg C/m2) is stored in the litter horizon. The developed algorithm allows us to refine the results with the acquisition of new data on soils, vegetation, and the degree of their disturbance, which is particularly important in the changing world.

Keywords

Organic matter soil cover information system soils of Russia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Antsiferova, “Indicative Meaning of Young Tree and Shrub Growth on Young Fallows in Kaliningrad Oblast,” Izvest. KGTU, No. 8, 111–116 (2005).Google Scholar
  2. 2.
    O. A. Antsiferova, “Dynamics of Fertility Indices on Fallow Lands of Kaliningrad Oblast,” Agrokhim. Vestn. No. 2, 2–3 (2008).Google Scholar
  3. 3.
    M. A. Babaeva, Extended Abstract of Candidate’s Dissertation in Biology (Rostov-on-Don, 2005).Google Scholar
  4. 4.
    N. I. Bazilevich, Biological Productivity of Ecosystems in Northern Eurasia (Nauka, Moscow, 1993) [in Russian].Google Scholar
  5. 5.
    I. N. Bezkorovainaya, G. A. Ivanova, P. A. Tarasov, et al., “Pyrogenic Transformation of Soils under Pine Stands of the Middle Taiga in the Krasnoyarsk Region,” Sib. Ekolog. Zh., No. 1, 143–152 (2005).Google Scholar
  6. 6.
    P. Bien’kovski, A. A. Titlyanova, and S. V. Shibareva, “Transformation Processes in Litters of Boreal Forests,” Sib. Ekolog. Zh., No. 10 (2003).Google Scholar
  7. 7.
    E. F. Vedrova, “Transformation of Plant Residues in 25-Year-Old Stands of the Major Forest-Forming Tree Species of Siberia,” Lesovedenie, No. 4, 13–21 (1995).Google Scholar
  8. 8.
    GOST 26213-91. Soils. Methods to Determine the Organic Matter Content (Moscow, 1992) [in Russian].Google Scholar
  9. 9.
    I. M. Gadzhiev, A. Yu. Korolyuk, A. A. Titlyanova, Steppes of Central Asia (Izd. SO RAN, Novosibirsk, 2002) [in Russian].Google Scholar
  10. 10.
    L. A. Grishina, Biological Turnover and Its Role in Soil Formation (Izd. Mosk. Gos. Univ., Moscow, 1974) [in Russian].Google Scholar
  11. 11.
    N. V. Evseeva, Extended Abstract of Candidate’s Dissertation in Biology (Rostov-on-Don, 2002).Google Scholar
  12. 12.
    G. A. Zavarzin and V. N. Kudeyarov, “Soil as the Major Source of Carbon Dioxide and Organic Carbon Rervoir in Russia,” Vestn. Ross. Akad. Nauk, 76(1), 14–29 (2006).Google Scholar
  13. 13.
    D. G. Zamolodchikov, D. V. Karelin, and A. I. Ivashchenko, “Postfire Changes in the Carbon Cycle in Southern Tundra,” Ekologiya, No. 4, 272–276 (1998).Google Scholar
  14. 14.
    D. G. Zamolodchikov, A. I. Utkin, G. N. Korovin, et al., “Dynamics of the Pools and Fluxes of Carbon in Russian Forests,” Ekologiya, No. 5, 323–333 (2005).Google Scholar
  15. 15.
    Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  16. 16.
    V. M. Kogut and A. S. Frid, “A Comparative Analysis of the Methods Used to Determine the Humus Content in Soils” Pochvovedenie, No. 9, 119–123 (1993).Google Scholar
  17. 17.
    N. N. Koshurnikova, Extended Abstract of Candidate’s Dissertation in Biology (Krasnoyarsk, 2007).Google Scholar
  18. 18.
    V. D. Kumacheva, Extended Abstract of Candidate’s Dissertation in Biology ( Rostov-on-Don, 2008).Google Scholar
  19. 19.
    I. N. Kurganova, Extended Abstract of Doctoral Dissertation in Biology (Moscow, 2010).Google Scholar
  20. 20.
    Ch. S. Kyrgys, Extended Abstract of Candidate’s Dissertation in Biology (Tomsk, 2004).Google Scholar
  21. 21.
    I. I. Lishtvan, E. T. Bazin, N. I. Gamayunov, and A. A. Terent’ev, A.A., Physics and Chemistry of Peat (Nedra, Moscow, 1989).Google Scholar
  22. 22.
    V. O. Lopes de Gerenyu, I. N. Kurganova, A. M. Ermolaev, et al., “Changes in the Organic Matter Pools upon Self-Rehabilitation of Plowed Chernozems,” Agrokhimiya, No. 5, 5–12 (2009).Google Scholar
  23. 23.
    L. R. Mukina, A. A. Shpedt, and G. E. Zolotukhin, “The Humus State of Fallow Chernozems in the Krasnoyarsk Region,” in Soil as a Link between Natural and Anthropogenically Transformed Ecosystems, (Materials of the II Int. Conf. Devoted to the 75th Anniversary of the Soil Science Department in Irkutsk State University) (Irkutsk, 2006), pp. 217–219 [in Russian].Google Scholar
  24. 24.
    L. V. Mukhortova, Extended Abstract of Candidate’s Dissertation in Biology (Krasnoyarsk, 2001).Google Scholar
  25. 25.
    D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter in Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].Google Scholar
  26. 26.
    Pools and Fluxes of Carbon in Terrestrial Ecosystems of Russia, Ed. by V. N. Kudeyarov and G. A. Zavarzin (Nauka, Moscow, 2007) [in Russian].Google Scholar
  27. 27.
    L. E. Rodin, N. P. Remezov, and N. I. Bazilevich, Methodological Guidelines to Study the Dynamics of the Biological Turnover in Phytocenoses (Nauka, Leningrad, 1968) [in Russian].Google Scholar
  28. 28.
    A. I. Utkin, D. G. Zamolodchikov, O. V. Chestnykh, et al., “Forests of Russia as a Reservoir for the Organic Carbon in the Biosphere,” Lesovedenie, No. 5, 8–23 (2001).Google Scholar
  29. 29.
    V. M. Fridland, Soil Map of the Russian Federation, 1: 2.5 M Scale (GUGK, Moscow, 1988) [in Russian].Google Scholar
  30. 30.
    O. V. Chestnykh, D. G. Zamolodchikov, and A. I. Utkin, “Total Reserves of the Biological Carbon and Nitrogen in Soils of Russian Forests,” Lesovedenie, No. 4, 30–42 (2004).Google Scholar
  31. 31.
    O. V. Chestnykh, V. A. Lyzhin, and A. V. Koksharova, “Carbon Reserves in Litters of Russian Forests,” Lesovedenie, No. 6, 114–121 (2007).Google Scholar
  32. 32.
    A. Z. Shvidenko, E. A. Vaganov, and S. Nil’sson, “The Biospheric Role of Russian Forests at the Beginning of the Third Millennium: Carbon Budget and the Kyoto Protocol,” Sib. Ekologich. Zh., No. 6, 649–658 (2003).Google Scholar
  33. 33.
    S. V. Shibareva, Extended Abstract of Candidate’s Dissertation in Biology (Novosibirsk, 2004).Google Scholar
  34. 34.
    L. L. Shishov, N. V. Komov, A. Z. Rodin, et al., The Soil Cover and Land Resources of the Russian Federation (Pochven. Inst. im. V.V. Dokuchaeva, RASKhN, Moscow, 2001) [in Russian].Google Scholar
  35. 35.
    L. S. Shugalei, Extended Abstract of Doctoral Dissertation in Biology (Krasnoyarsk, 1991).Google Scholar
  36. 36.
    D. G. Schepaschenko and M. V. Schepaschenko, “Carbon Reseerves in Litter and Aboveground Phytomass of Larch Stands in the Northeast of Yakutia,” Lesn. Khoz., No. 5, 36–37 (2000).Google Scholar
  37. 37.
    I. D. Yurkevich and E. P. Yaroshevich, Biological Productivity of Different Types and Associations of Pine Forests (Nauka i tekhnika, Minsk, 1974) [in Russian].Google Scholar
  38. 38.
    P. V. Bolstad and J. M. Vose, “Forest and Pasture Carbon Pools and Soil Respiration in the Southern Appalachian Mountains,” For. Sci. 51, 372–383 (2005).Google Scholar
  39. 39.
    Carbon Storage in Forests and Peatlands of Russia, General Technical Report NE-244 (USDA, Forest Service, Northeast Research Station, Radnr, PA, 1998).Google Scholar
  40. 40.
    C. C. Cleveland, A. R. Townsend, S. K. Schmidt, et al., “Soil Microbial Dynamics and Biogeochemistry in Tropical Forests and Pastures, Southwestern Costa Rica,” Ecol. Applic. No. 13, 314–326 (2003).Google Scholar
  41. 41.
    D. A. Martens, T. E. Reedy, and D. T. Lewis, “Soil Organic Carbon Content and Composition of 130-Year Crop, Pasture and Forest Land-Use Managements,” Gl. Change Biol. No. 10, 65–78 (2004).Google Scholar
  42. 42.
    S. Nilsson, A. Shvidenko, V. Stolbovoi, et al., Full Carbon Account for Russia, Interim Rep. IR-00-021 (Laxenburg, Austria, 2000) [http://www.iiasa.ac.at/Publications/Documents/IR-00-021.pdf].
  43. 43.
    C. H. Racine, “Tundra Fire Effects on Soils and Three Plant Communities along a Hill-Slope Gradient in the Seward Peninsula, Alaska,” Arctic, No. 34(1), 71–84 (1981).Google Scholar
  44. 44.
    V. A. Rozhkov, V. B. Wagner, B. M. Kogut, et al., Soil Carbon Estimates and Soil Carbon Map for Russia (IIASA, Laxenburg, 1996).Google Scholar
  45. 45.
    D. Schepaschenko, I. McCallum, A. Shvidenko, et al., “A New Hybrid Land Cover Dataset for Russia: AMethodology for Integrating Statistics, Remote Sensing and In Situ Information,” J. Land Use Sci., No. 6(4), 245–259 (2011).Google Scholar
  46. 46.
    T. E. Staley, J. M. Gonzalez, and J. P. S. Neel, “Conversion of Deciduous Forest to Sylvopasture Produces Soil Properties Indicative of Rapid Transition to Improved Pasture,” Agroforest Syst, No. 74, 267–277 (2008).Google Scholar
  47. 47.
    V. Stolbovoi, “Carbon in Russian Soils,” Clim. Change, No. 55, 131–156 (2002).Google Scholar
  48. 48.
    V. Stolbovoi, “Soil Carbon in the Forests of Russia,” Mitig. Adapt. Strat. Gl. Change, No. 11, 203–222 (2006).Google Scholar
  49. 49.
    V. Stolbovoi and I. McCallum, Land Resources f Russia (IIASA, Laxenburg, 2002) [http://www.iiasa.ac.at/Research/FOR/russia_cd/index.htm].Google Scholar
  50. 50.
    C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region,” Gl. Biogeochem. Cycles, GB2023 (2009).Google Scholar
  51. 51.
    T. S. Vinson and T. P. Kolchugina, “Pools and Fluxes of Biogenic Carbon in the Former Soviet Union,” Water Air Soil Pollut., No. 70, 223–237 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. G. Schepaschenko
    • 1
    • 2
  • L. V. Mukhortova
    • 3
  • A. Z. Shvidenko
    • 1
    • 3
  • E. F. Vedrova
    • 3
  1. 1.International Institute for Applied Systems AnalysisLaxenburgAustria
  2. 2.Moscow State Forest UniversityMoscow oblastRussia
  3. 3.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia

Personalised recommendations