Eurasian Soil Science

, Volume 45, Issue 11, pp 1048–1056 | Cite as

Study of ultramicrobacteria (Nanoforms) in soils and subsoil deposits by electron microscopy

  • V. S. Soina
  • L. V. Lysak
  • I. A. Konova
  • E. V. Lapygina
  • D. G. Zvyagintsev
Soil Biology


The use of multiple centrifuging and filtration of water suspensions from different soils and subsoil deposits allowed revealing the ultrafine forms (nanosized, nanoforms) of bacteria. In the soils studied, the number of bacteria obtained by filtration using 0.2-μm filters was 20–300 mln cells in 1 g soil; the share of these bacteria of their total population in the natural soils reached 5% and was higher (up to 15%) in the polluted urban soils. The study of bacterial nanoforms in situ by the methods of scanning and transmission microscopy has shown the presence of dividing cells, which testifies to their viability. The cells without signs of division were similar in their ultrastructural characteristics to dormant forms of nonspore-forming bacteria. They were observed in permafrost deposits. The data obtained attest that the bacterial nanoforms are widespread in soils and subsoil deposits. According to their morphological and cytological characteristics, they are represented by both active and dormant forms to survive unfavorable conditions.


EURASIAN Soil Science Urban Soil Negative Type Cellular Wall Anthropogenic Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. D. Anan’eva and D. I. Nikitin, “Sizes of Bacteria in Some Soils,” Pochvovedenie, No. 4, 132–135 (1979).Google Scholar
  2. 2.
    M. B. Vainshtein and E. B. Kudryashova, “Nannobacteria,” Microbiology 69(2), 129–138 (2000).CrossRefGoogle Scholar
  3. 3.
    V. S. Guzev and B. A. Byzov, “Morphometric Analysis of Bacteria Associated with Soil Millipedes,” Microbiology 75(2), 219–225 (2006).CrossRefGoogle Scholar
  4. 4.
    V. S. Guzev and D. G. Zvyagintsev, “The Biometric Analysis of Bacterial Cells in Soil,” Microbiology 72(2), 187–192 (2003).CrossRefGoogle Scholar
  5. 5.
    E. V. Demkina, V. S. Soina, G. I. El’-Registan, and D. G. Zvyagintsev, “Reproductive Resting Forms of Arthrobacter globiformis,” Microbiology 69(3), 309–313 (2000).CrossRefGoogle Scholar
  6. 6.
    V. V. Dmitriev, N. E. Suzina, E. S. Barinova, V. I. Duda, A. M. Voronin, “An Electron Microscopic Study of the Ultrastructure of Microbial Cells in Extreme Biotopes In Situ,” Microbiology 73(6), 716–723 (2004).CrossRefGoogle Scholar
  7. 7.
    V. V. Dmitriev, N. E. Suzina, T. G. Rusakova, D. A. Gilichinskii, V. I. Duda, “Ultrastructural Characteristics of Natural Forms of Microorganisms Isolated from Permafrost Grounds of Eastern Siberia by the Method of Low-Temperature Fractionation,” Dokl. Biol. Sci. 378, 304–306 (2001).CrossRefGoogle Scholar
  8. 8.
    V. V. Dmitriev, N. E. Suzina, T. G. Rusakova, P. Yu. Petrov, R. R. Oleinikov, T. Z. Esikova, V. P. Kholodenko, V. I. Duda, A. M. Boronin, “Electron Microscopic Detection and in situ Characterization of Bacterial Nanoforms in Extreme Biotopes,” Microbiology 77(1), 39–46 (2008).CrossRefGoogle Scholar
  9. 9.
    V. I. Duda, N. E. Suzina, V. I. Akimov, M. B. Vainshtein, V. V. Dmitriev, E. S. Barinova, T. N. Abashina, R. R. Oleinikov, T. Z. Esikova, A. M. Boronin, “Ultrastructural Organization and Development Cycle of Soil Ultramicrobacteria Belonging to the Class Alphaproteobacteria,” Mikrobiologiya 76(5), 575–584 (2007).Google Scholar
  10. 10.
    D. G. Zvyagintsev, “Microorganisms in Permafrost,” Usp. Mikrobiol., No. 25, 5–25 (1992).Google Scholar
  11. 11.
    I. A. Konova, L. V. Lysak, and E. V. Lapygina, “Ultramicrobacteria (Nanoforms) as a Component of the Bacterial Diversity in Soils,” in Ecology of Russia: Toward Innovative Studies (Izd. Dom “Astrakhanskii Universitet”, Astrakhan, 2010), No. 2, 50–56 (2010).Google Scholar
  12. 13.
    N. A. Krasil’nikov, “On Some Forms of Microorganisms,” Usp. Sovrem. Biol. 54(6), 22–32 (1954).Google Scholar
  13. 14.
    A. E. Kriss, V. I. Biryuzova, and A. Zolkover, “Point-Size Dialysis: Pretreatment of Biological Preparations for Electron Microscopy,” Mikrobiologiya 63(3), 484–489 (1948).Google Scholar
  14. 15.
    L. V. Lysak, E. V. Lapygina, I. A. Konova, and D. G. Zvyagintsev, “Population Density and Taxonomic Composition of Bacterial Nanoforms in Soils of Russia,” Eur. Soil Sci. 43(7), 765–770 (2010).CrossRefGoogle Scholar
  15. 16.
    A. L. Mulyukin, K. A. Lusta, M. N. Gryaznova, A. N. Kozlova, M. V. Duzha, L. L. Mityushina, V. I. Duda, G. I. El’-Registan, “Formation of Resting Cells in Microbial Suspensions Undergoing Autolysis,” Microbiology 66(1), 32–38 (1997).Google Scholar
  16. 17.
    D. I. Nikitin, “Application of Electron Microscopy for Studying Soil Suspensions,” Pochvovedenie, No. 6, 86–91 (1964).Google Scholar
  17. 18.
    D. I. Nikitin, L. V. Vasil’eva, and R. A. Lokhmacheva, New and Rare Species of Soil Microorganisms, (Nauka, Moscow, 1966) [in Russian].Google Scholar
  18. 19.
    D. M. Novogrudskii, “On filtrating Forms of Azotobacter,” Mikrobiologiya 4(2), 176–192 (1935).Google Scholar
  19. 20.
    N. E. Suzina, T. Z. Esikova, V. N. Akimov, T. M. Abashina, V. V. Dmitriev, V. N. Polivtseva, V. I. Duda, A. M. Boronin, “Study of Ectoparasitism of Ultramicrobacteria of the Genus Kaistia, strains NF1 and NF3 by Electron and Fluorescence Microscopy,” Microbiology 77(1), 47–54 (2008).CrossRefGoogle Scholar
  20. 21.
    H. C. Bae and L. E. Casida, “Responses of Indigenous Microorganisms to Soil Incubation as Viewed by Trans-mission Electron Microscopy of Cell Thin Sections,” J. Bacteriol. 113, 1462–1473 (1973).Google Scholar
  21. 22.
    H. C. Bae, E. H. Cota-Robles, and L. E. Casida, “Microflora of Soil as Viewed by Transmission Electron Microscopy,” Appl. Microbiol. 23(3), 637–643 (1972).Google Scholar
  22. 23.
    L. E. Casida, “Observation of Microorganisms in Soil and Other Habitats,” Appl. Microbiol. 18, 1065–1071 (1969).Google Scholar
  23. 24.
    R. S. Caughey and M. A. Miller, “Rutenium Tetroxide Fixation Comparison of Bacterial Surface Ultrastructure,” in Proceedings of the 44th Annual Meeting of the Electron Microscopy Society of America, Ed. by G.W. Batley (San Francisco, 1986), 256–257.Google Scholar
  24. 25.
    S. P. Collins, R. W. Scheetz, R. I. Ray, P. A. Wagner, B. J. Little, “Advantages of Environmental Scanning Electron Microscopy in Studies of Microorganisms,” Microsc. Res. Techn. 25, 398–405 (1993).CrossRefGoogle Scholar
  25. 26.
    D. A. Gilichinsky, G. S. Wilson, E. I. Friedmann, C. P. McKay, R. S. Sletten, E. M. Rivkina, T. A. Vishnivetskaya, L. G. Erokhina, N. E. Ivanushkina, G. A. Koshkina, V. A. Sherbakova, V. S. Soina, E. V. Spirina, E. A. Vorobyova, D. G. Fedorov-Davydov, B. Hallet, S. M. Ozerskaya, V. A. Sorokovikov, K. S. Laurinavichyus, A. V. Shatilovich, J. P. Chanton, V. T. Ostroumov, J. M. Tiedje, “Microbial Population in Antarctic Permafrost: Biodiversity, State, Age, and Implication,” Astrobiology 7, 275–311 (2007).CrossRefGoogle Scholar
  26. 27.
    E. O. Kajander, I. Kuronen, K. Akerman, and A. Pelttari, “Nanobacteria from Blood, the Smallest Culturable Autonomously Replicating Agent on Earth,” Proc. SPIE-Int. Soc. Opt. Eng. 3111, 420–428 (1997).Google Scholar
  27. 28.
    B. Little, P. Wagner, R. Ray, R. Pope, R. Scheetz, “Biofilms: An ESEM Evaluation of Artifacts Introduced During SEM Preparation,” J. Industrial Microb. 8, 213–222 (1991).CrossRefGoogle Scholar
  28. 29.
    R. I. Morita, “Bioavailability of Energy and Starvation Survival in Nature,” Can. J. Microbiol. 34, 436–441 (1988).CrossRefGoogle Scholar
  29. 30.
    N. Panikov, “Contribution of Nanosized Bacteria to the Total Biomass and Activity of a Soil Microbial Community,” Adv. Appl. Microbiol. 57, 245–296 (2005).CrossRefGoogle Scholar
  30. 31.
    D. B. Roszak and R. R. Colwell, “Survival Strategies of Bacteria in the Natural Environment,” Microbiol. Rev. 51, 367–379 (1987).Google Scholar
  31. 32.
    V. S. Soina, A. L. Mulyukin, E. V. Demkina, E. A. Vorobyova, G. I. El-Registan, “The Structure of Resting Bacterial Population in Soil Permafrost,” Astrobiology 4, 435–458 (2004).CrossRefGoogle Scholar
  32. 33.
    V. S. Soina and E. A. Vorobiova, “Preservation of Microbial Cell Structure in Permafrost,” in Viable Microorganisms in Permafrost (Pushchino, 1994), pp. 37–47.Google Scholar
  33. 34.
    V. S. Soina, E. A. Vorobiova, D. G. Zvyagintsev, and D. A. Gilichinsky, “Preservation of Cell Structure in Permafrost: a Model for Exobiology,” Adv. Space Res. 15(3), 237–242 (1995).CrossRefGoogle Scholar
  34. 35.
    V. S. Soina, “Cytological Aspects of Structural Stability of Bacterial Cells in Terrestrial Permafrost,” Abstr. Workshop “Water in the upper Martian surface,” April, 17–19, Potsdam, 2002.Google Scholar
  35. 36.
    E. Vorobyova, V. Soina, M. Gorlenko, N. Minkovskaya, N. Zalinova, A. Mamukelashvili, D. Gilichinsky, E. Rivkina, and T. Vishnivetskaya, “The Deep Cold Biosphere: Facts and Hypothesis,” FEMS Microbiol. Rev. 20, 277–290 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. S. Soina
    • 1
  • L. V. Lysak
    • 1
  • I. A. Konova
    • 1
  • E. V. Lapygina
    • 1
  • D. G. Zvyagintsev
    • 1
  1. 1.Faculty of Soil ScienceLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations