Advertisement

Eurasian Soil Science

, Volume 45, Issue 9, pp 861–872 | Cite as

Description and reconstruction of the soil pore space using correlation functions

  • K. M. Gerke
  • M. V. Karsanina
  • E. B. Skvortsova
Soil Physics

Abstract

In this paper a method for the description and reconstruction of the soil pore space using correlation functions has been examined. The reconstruction procedure employed here is the best way of verification of the potential descriptor of the soil pore space. Thin sections representing eight major types of pore space in zonal loamy soils and parent materials of the Russian Plain with pores of different shapes and orientations have been chosen for this study. Comparison based on the morphological analysis of the original pore space images and their correlation function reconstructions obtained using simulated annealing technique indicates that this method of reconstruction adequately describes the isometric soil pore space with isometric dissected, isometric slightly dissected, and rounded pores. The two-point correlation functions calculated with the use of the orthogonal method proved to be different for the examined types of soil pore space; they reflect the soil porosity, specific surface, and pore structure correlations at different lengths. The results of this study allow us to conclude that the description of the soil pore space with the help of correlation functions is a promising approach, but requires more development. Further directions of the development of this method for describing the soil pore space and determining the soil physical processes are outlined.

Keywords

Correlation Function Thin Section Original Image Reconstructed Image Pore Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. M. Gerke, R. C. Sidle, and S. B. Turuntaev, “The Effect of Preferential Flow Paths on the Vertical Migration of Water in the Aeration Zone: Experimental Study,” Geoekologiya, No. 5, 422–432 (2010).Google Scholar
  2. 2.
    K. M. Gerke, E. B. Skvortsova, and D. V. Korost, “Tomographic Method of Studying Soil Pore Space: Current Perspectives and Results for Some Russian Soils,” Eur. Soil Sci. 45(7), 781–791 (2012).CrossRefGoogle Scholar
  3. 3.
    G. V. Dobrovol’skii and S. A. Shoba, Scanning Electron Microscopy of Soils (Izd. Mosk. Gos. Univ., Moscow, 1978) [in Russian].Google Scholar
  4. 4.
    V. I. Osipov, V. N. Sokolov, and N. A. Rumyantseva, Microfabric of Clay Sediments (Nedra, Moscow, 1989) [in Russian].Google Scholar
  5. 5.
    E. I. Parfenova and E. A. Yarilova, Handbook on Soil Micromorphology (Nauka, Moscow, 1977) [in Russian].Google Scholar
  6. 6.
    V. A. Rozhkov, Soil Information Theory (Agropromizdat, Moscow, 1989) [in Russian].Google Scholar
  7. 7.
    E. B. Skvortsova, “Micromorphometry of Soil Pore Space and Diagnostics of Soil Structure,” Pochvovedenie, No. 11, 42–49 (1994).Google Scholar
  8. 8.
    E. B. Skvortsova and D. R. Morozov, “Micromorphometric Classification and Diagnostics of Soil Pore Space,” Pochvovedenie, No. 6, 49–56 (1993).Google Scholar
  9. 9.
    E. B. Skvortsova and N. V. Kalinina, “Micromorphometric Types of the Pore Space in Virgin and Plowed Loamy Soils,” Eur. Soil Sci. 37(9), 980–991 (2004).Google Scholar
  10. 10.
    V. N. Sokolov, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Moscow, 1988).Google Scholar
  11. 11.
    J. G. Berryman and S. C. Blair, “Use of Digital Image Analysis to Estimate Fluid Permeability of Porous Materials: Application of Two-Point Correlation Functions,” J. Appl. Phys. 60, 1930–1938 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    B. Biswal, C. Manwart, and R. Hilfer, “Three-Dimensional Local Porosity Analysis of Porous Media,” Physica A (Amsterdam) 255, 221–241 (1998).MathSciNetCrossRefGoogle Scholar
  13. 13.
    P. apek, V. Hejtmánek, J. Kolafa, and I. Brabec, “Transport Properties of Stochastically Reconstructed Porous Media with Improved Pore Connectivity,” Transp. Porous. Med. 88, 87–106 (2011).CrossRefGoogle Scholar
  14. 14.
    C. Dorronsoro, “Micromorfometria de Suelos. Aplicaciones,” An. Edafol. Agrobiol. 47(1–2), 503–533 (1988).Google Scholar
  15. 15.
    Y. Jiao, F. H. Stillinger, and S. Torquato, “Modeling Heterogeneous Materials via Two-Point Correlation Functions: Basic Principles,” Phys. Rev. E. 76, 031110 (2007).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Y. Jiao, F. H. Stillinger, and S. Torquato, “Modeling Heterogeneous Materials Via Two-Point Correlation Functions. II. Algorithmic Details and Applications,” Phys. Rev. E: 77 031110 (2008).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Jiao, F. H. Stillinger, and S. Torquato, “A Superior Descriptor of Random Textures and Its Predictive Capacity,” Proc. Natl. Acad. Sci. 106, 17634 (2009).ADSPubMedCrossRefGoogle Scholar
  18. 18.
    Y. Jiao, F. H. Stillinger, and S. Torquato, “Geometrical Ambiguity of Pair Statistics. II. Heterogeneous Media,” Phys. Rev. E. 82, 011106 (2010).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    A. Jongerius, D. Schoonderbeek, A. Jager, and St. Kowalinski, “Electro-Optical Soil Porosity Investigation by Means of Quantimet-B Equipment,” Geoderma 7, 177–198 (1972).CrossRefGoogle Scholar
  20. 20.
    C. Manwart and R. Hilfer, “Reconstruction of Random Media Using Monte-Carlo Methods,” Phys. Rev. E. 59, 5596 (1999).ADSCrossRefGoogle Scholar
  21. 21.
    W. B. Lindquist, S.-M. Lee, D. A. Coker, K. W. Jones, and P. Spanne, “Medial Axis of Void Structure in Three-Dimensional Tomographic Images of Porous Media,” J. Geophys. Res. 101, 8297–8310 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    A. R. Mermut, R. Protz, and E. B. A. Bisdom, “Application of Image Analysis at Microscopic and Submicroscopic Levels in Soil Science,” in 14th Int. Congr. Soil Sci., (Aug. 12–18, Kyoto, 1990), Vol. VII (Commission VII), pp. 343–356.Google Scholar
  23. 23.
    A. J. Ringrose-Voase, “A Scheme for the Quantitative Description of Soil Macrostructure by Image Analysis,” J. Soil Sci. 38, 343–356 (1987).CrossRefGoogle Scholar
  24. 24.
    H. Rogasik, J. W. Crawford, O. Wendroth, I. M. Young, M. Joschko, and K. Ritz, “Discrimination of Soil Phases by Dual Energy X-Ray Tomography,” Soil Sci. Soc. Am. J. 63, 741–751 (1999).CrossRefGoogle Scholar
  25. 25.
    S. Sleutel, V. Cnudde, B. Masschaele, J. Vlassenbroek, M. Dierick, L. van Hoorebeke, P. Jacobs, and S. de Neve, “Comparison of Different Nano- and Micro-Focus X-Ray Computed Tomography Set-Ups for the Visualization of the Soil Microstructure and Soil Organic Matter,” Comput. Geosci. 34, 931–938 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    T. Tang, O. Teng, X. He, and D. Luo, “A Pixel Selection Rule Based on the Number of Different-Phase Neighbors for the Simulated Annealing Reconstruction of Sandstone Microstructure,” J. Microscopy 234, 262–268 (2009).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    S. Torquato, “Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties,” Appl. Mech. Rev 44, 37–76 (1991).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag (New York, 2002).Google Scholar
  29. 29.
    C. L. Y. Yeong and S. Torquato, “Reconstructing Random Media,” Phys. Rev. E. 57, 495–506 (1998).MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    C. L. Y. Yeong and S. Torquato, “Reconstructing Random Media. II. Three-Dimensional Media from Two-Dimensional Cuts,” Phys. Rev. E. 58, 224–233 (1998).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • K. M. Gerke
    • 1
    • 3
  • M. V. Karsanina
    • 1
    • 2
  • E. B. Skvortsova
    • 3
  1. 1.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Applied Mathematics and PhysicsVladimir State UniversityVladimirRussia
  3. 3.Dokuchaev Soil Science InstituteRussian Academy of Agricultural SciencesMoscowRussia

Personalised recommendations