Eurasian Soil Science

, Volume 45, Issue 7, pp 700–709 | Cite as

Tomographic method of studying soil pore space: Current perspectives and results for some Russian soils

  • K. M. Gerke
  • E. B. Skvortsova
  • D. V. Korost
Soil Physics


The methods and results of tomographic soil studies are discussed. A brief history of the development of the tomographic method and its application in soil science are described, and the major results obtained with the use of this method are outlined. An experience of the application of X-ray microtomography for studying the structure of undisturbed samples of some Russian soils is also considered. Three-dimensional images of soil aggregates and soil pore space with a resolution of 15.8 μm have been obtained for the upper horizons of gray forest and soddy-podzolic soils. On the basis of these data, the merits and demerits of the tomographic method in comparison with the traditional method for studying soil pedality and pore space in thin sections are discussed. Certain advantages of the tomographic method provide good possibilities to study soil processes at a qualitatively new level. Priority directions of the development of tomographic studies in soil science are outlined.


Pore Space EURASIAN Soil Science Soil Bulk Density Lattice Boltzmann Method Soddy Podzolic Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Gerke, M. V. Karsanina, and E. B. Skvortsova, “Description and Reconstruction of Soil Structure with the Use of Correlation Functions,” Eur. Soil Sci. 45(9) (2012) [in press].Google Scholar
  2. 2.
    K. M. Gerke, R. C. Sidle, and S. B. Turuntaev, “The Impact of Preferential Flow Paths on the Vertical Migration of Water in the Aeration Zone: Experimental Study,” Geoekologiya, No. 5, 422–432 (2010).Google Scholar
  3. 3.
    G. V. Dobrovol’skii and S. A. Shoba, Scanning Electron Microscopy of Soils (Izd. Mosk. Gos. Univ., Moscow, 1978) [in Russian].Google Scholar
  4. 4.
    D. V. Korost, G. A. Kalmykov, V. O. Yapaskurt, and M. K. Ivanov, “Application of Computed Microtomography for Studying the Structure of Terrigenous Collectors,” Geol. Nefti Gaza, No. 2, 36–42 (2010).Google Scholar
  5. 5.
    V. I. Osipov, V. N. Sokolov, and N. A. Rumyantseva, Microfabric of Clay Sediments (Nedra, Moscow, 1989) [in Russian].Google Scholar
  6. 6.
    E. I. Parfenova and E. A. Yarilova, Manual on Soil Micromorphology (Nauka, Moscow, 1977) [in Russian].Google Scholar
  7. 7.
    E. B. Skvortsova, “Changes in the Geometric Structure of Pores and Aggregates as Indicators of the Structural Degradation of Cultivated Soils,” Eur. Soil Sci. 42(11), 1254–1262 (2009).CrossRefGoogle Scholar
  8. 8.
    G. N. Fedotov, Yu. D. Tret’yakov, A. I. Pozdnyakov, D. V. Zhukov, E. I. Pakhomov, “The Effect of Colloidal Structure of Organomineral Gels on Soil Properties,” Dokl. Akad. Nauk, No. 394, 212–214 (2004).Google Scholar
  9. 9.
    G. N. Fedotov, Yu. D. Tret’yakov, A. I. Pozdnyakov, and E. I. Pakhomov, “The Effect of Organomineral Gels on the Nonsolvent Soil Volume,” Dokl. Akad. Nauk, No. 397, 64–67 (2004).Google Scholar
  10. 10.
    S. H. Anderson, C. J. Gantzer, J. M. Boone, and R. J. Tully, “Rapid Nondestructive Bulk Density and Soil-Water Content Determination by Computed Tomography,” Soil Sci. Soc. Am. J. 52, 35–40 (1988).CrossRefGoogle Scholar
  11. 11.
    P. C. Baveye, M. Laba, W. Otten, L. Bouckaert, P. D. Sterpaio, R. R. Goswami, D. Grinev, A. Houston, Y. Hu, J. Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, W. Wang, Q. Wei, M. Sezgin, “Observer-Dependent Variability of the Thresholding Step in the Quantitative Analysis of Soil Images and X-Ray Microtomography Data,” Geoderma 157, 51–63 (2010).CrossRefGoogle Scholar
  12. 12.
    R. Brewer, Fabric and Mineral Analysis of Soils (J. Willey and Sons, New York, 1964).Google Scholar
  13. 13.
    Y. Capowiez, S. Sammartino, and E. Michel, “Using X-Ray Tomography to Quantify Earthworm Bioturbation Non-Destructively in Repacked Soil Cores,” Geoderma 162, 124–131 (2011).CrossRefGoogle Scholar
  14. 14.
    V. Cnudde, P. Dubruel, K. de Winne, I. de Witte, B. Masschaele, P. Jacobs, and E. Schacht, “The Use of X-Ray Tomography in the Study of Water Repellents and Consolidants,” Engin. Geol. 103, 84–92 (2009).CrossRefGoogle Scholar
  15. 15.
    A. M. Cormack, “Representation of Foundation by Its Line with Some Radiological Application,” J. Appl. Phys. 34, 2722–2727 (1963).CrossRefGoogle Scholar
  16. 16.
    S. Crestana, R. Cesareo, and S. Mascarenhas, “Using a Computed-Tomography Miniscanner in Soil Science,” Soil Sci. 142, 56–61 (1986).CrossRefGoogle Scholar
  17. 17.
    S. De Gryze, L. Jassogne, J. Six, H. Bossuyt, M. Wevers, and R. Merckx, “Pore Structure Changes During Decomposition of Fresh Residue: X-Ray Tomography Analysis,” Geoderma 134, 82–96 (2006).CrossRefGoogle Scholar
  18. 18.
    T. R. Elliot and R. J. Heck, “A Comparison of Optical and X-Ray CT Technique for Void Analysis in Soil Thin Section,” Geoderma 141, 60–60 (2007).CrossRefGoogle Scholar
  19. 19.
    T. R. Elliot, W. D. Reynolds, and R. J. Heck, “Use of Existing Pore Models and X-Ray Computed Tomography to Predict Saturated Soil Hydraulic Conductivity,” Geoderma 156, 133–142 (2010).CrossRefGoogle Scholar
  20. 20.
    K. M. Gerke, R. C. Sidle, and Y. Tokuda, “Sorption of Uranine on Forest Soils,” Hydrol. Res. Let. 2, 32–35 (2008).CrossRefGoogle Scholar
  21. 21.
    J. R. Gibson, H. Lin, and M. A. Bruns, “A Comparison of Fractal Analytical Methods on 2- and 3-Dimensional Computed Tomographic Scans of Soil Aggregates,” Geoderma 134, 335–348 (2006).CrossRefGoogle Scholar
  22. 22.
    L. Goldstein, S. O. Prasher, and S. Ghoshal, “Three-Dimensional Visualization of Non-Aqueous Phase Liquid Volumes in Natural Porous Media Using a Medical X-Ray Computed Tomography Scanner,” Contamin. Hydrol. 93, 96–110 (2007).CrossRefGoogle Scholar
  23. 23.
    C. Grosbellet, L. Vidal-Beaudet, V. Caubel, and S. Charpentier, “Improvement of Soil Structure Formation by Degradation of Coarse Organic Matter,” Geoderma 162, 27–38 (2011).CrossRefGoogle Scholar
  24. 24.
    R. Hilfer, “Geometric and Dielectric Characterization of Porous Media,” Phys. Rev. 44, 60–75 (1991).CrossRefGoogle Scholar
  25. 25.
    G. N. Hounsfield, “Computerized Transverse Axial Scanning (Tomography). Description to System,” Br. J. Radiol. 46, 1016–1022 (1973).CrossRefGoogle Scholar
  26. 26.
    A. G. Hunt, T. E. Skinner, R. P. Ewing, and B. Ghanbarian-Alavijeh, “Dispersion of Solutes in Porous Media,” The Europ. Physic. J. 80, 411–432 (2011).Google Scholar
  27. 27.
    A. Kaestner, M. Schneebeli, and F. Graf, “Visualizing Three-Dimensional Root Networks Using Computed Tomography,” Geoderma 136, 459–469 (2006).CrossRefGoogle Scholar
  28. 28.
    H. M. Kim, S. H. Anderson, P. P. Motavalli, and C. J. Gantzer, “Compaction Effects on Soil Macropore Geometry and Related Parameters for an Arable Field,” Geoderma 160, 244–251 (2010).CrossRefGoogle Scholar
  29. 29.
    M. Lonctoc-Roy, P. Dutilleul, S. O. Prasher, L. Han, T. Brouillet, and D. L. Smith, “Advances in the Acquisition and Analysis of CT Scan Data to Isolate a Crop Root System from the Soil Medium and Quality Root System Complexity in 3-D Space,” Geoderma 137, 231–241 (2006).CrossRefGoogle Scholar
  30. 30.
    L. Luo, H. Lin, and P. Halleck, “Quantifying Soil Structure and Preferential Flow in Intact Soil Using X-Ray Computed Tomography,” Soil Sci. Soc. Am. J. 72, 1058–1069 (2008).CrossRefGoogle Scholar
  31. 31.
    L. Luo, H. Lin, and S. Li, “Quantification of 3-D Soil Macropore Networks in Different Soil Types and Land Uses Using Computed Tomography,” J. Hydrol. 393, 53–64 (2010).CrossRefGoogle Scholar
  32. 32.
    F. S. J. Martínez, M. A. Martín, F. J. Caniego, M. Tuller, A. Guber, Y. Pachepsky, and C. Garcia-Gutiérrez, “Multifractal Analysis of Discretized X-Ray CT Images for the Characterization of Soil Macropore Structures,” Geoderma 156, 32–42 (2010).CrossRefGoogle Scholar
  33. 33.
    M. Menon, Q. Yuan, X. Jia, A. J. Dougill, S. R. Hoon, A. D. Thomas, and R. A. Williams, “Assessment of Physical and Hydrological Properties of Biological Soil Crusts Using X-Ray Microtomography and Modeling,” J. Hydrol. 397, 47–54 (2011).CrossRefGoogle Scholar
  34. 34.
    O. Monga, M. Bousso, P. Garnier, and V. Pot, “Using Pore Space 3D Geometrical Modeling to Simulate Biological Activity: Impact of Soil Structure,” Comput. Geosci. 35, 1789–1801 (2009).CrossRefGoogle Scholar
  35. 35.
    S. J. Mooney and C. Morris, “A Morphological Approach to Understand Preferential Flow Using Image Analysis with Dye Tracer and X-Ray Computed Tomography,” Catena 73, 204–211 (2008).CrossRefGoogle Scholar
  36. 36.
    N. Nunan, K. Ritz, M. Rivers, D. S. Feeney, I. M. Young, “Investigating Microbial Micro-Habitat Structure Using X-Ray Computed Tomography,” Geoderma 133, 398–407 (2006).CrossRefGoogle Scholar
  37. 37.
    W. Oh and B. Lindquist, “Image Thresholding by Indicator Kriging,” IEEE Trans. Pattern. Anal. Mach. Intell. 21, 590–602 (1999).CrossRefGoogle Scholar
  38. 38.
    A. Pedrotti, E. A. Pauletto, S. Crestana, P. E. Cruvinel, P. E. Vaz, J. M. Naime, and A. M. Silva, “Planosol Soil Sample Size for Computerized Tomography Measurement of Physical Parameters,” Sci. Agric. 60, 735–740 (2003).CrossRefGoogle Scholar
  39. 39.
    S. Peth, R. Horn, F. Beckmann, T. Donath, J. Fischer, A. J. M. Smucker, “Three-Dimensional Quantification of Intra-Aggregate Pore-Space Features Using Synchrotron-Radiation-Based Micromorphology,” Soil Sci. Soc. Am. J. 72, 897–907 (2008).CrossRefGoogle Scholar
  40. 40.
    S. Peth, J. Nellesen, G. Fischer, and R. Horn, “Non-Invasive 3D Analysis of Local Soil Deformation Under Mechanical and Hydraulic Stresses by μCT and Digital Image Correlation,” Soil Tillage Res. 111, 3–18 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Piñuela, A. Alvarez, D. Andina, R. J. Heck, and A. M. Tarquis, “Quantifying Soil Pore Distribution from 3D Images: Multifractal Spectrum through Wavelet Approach,” Geoderma 155, 203–210 (2010).CrossRefGoogle Scholar
  42. 42.
    L. F. Pires, R. C. J. Arthur, V. Correchel, O. O. S. Bacchi, and K. Reichardt, “The Use of Gamma Ray Computed Tomography to Investigate Soil Compaction due to Core Sampling Devices,” Braz. J. Phys. 34, 728–731 (2004).CrossRefGoogle Scholar
  43. 43.
    L. F. Pires, O. O. S. Bacchi, and K. Reichardt, “Assessment of Soil Structure Repair due to Wetting and Drying Cycles through 2D Tomographic Image Analysis,” Soil Tillage Res. 94, 537–545 (2007).CrossRefGoogle Scholar
  44. 44.
    L. F. Pires, J. A. R. Borges, O. O. S. Bacchi, and K. Reichardt, “Twenty-Five Years of Computed Tomography in Soil Physics: A Literature Review of Brazilian Contribution,” Soil Tillage Res. 110, 197–210 (2010).CrossRefGoogle Scholar
  45. 45.
    L. F. Pires, F. A. M. Cassaro, O. O. S. Bacchi, and K. Reichardt, “Non-Destructive Image Analysis of Soil Surface Porosity and Bulk Density Dynamics,” Radiat. Phys. Chem. 80, 561–566 (2011).CrossRefGoogle Scholar
  46. 46.
    W. L. Quinton, T. Elliot, J. S. Price, F. Rezanezhad, and R. Heck, “Measuring Physical and Hydraulic Properties of Peat from X-Ray Tomography,” Geoderma 153, 269–277 (2009).CrossRefGoogle Scholar
  47. 47.
    W. S. Rasband, ImageJ (US National Institutes of Health, Bethesda, Maryland, 1997–2011) ( Scholar
  48. 48.
    H. Rogasik, J. W. Crawford, O. Wendroth, I. M. Young, M. Joschko, and K. Ritz, “Discrimination of Soil Phases by Dual Energy X-Ray Tomography,” Soil Sci. Soc. Am. J. 69, 741–751 (1999).CrossRefGoogle Scholar
  49. 49.
    H. Rogasik, I. Onasch, J. Brunotte, D. Jegou, and O. Wendroth, “Assessment of Soil Structure Using X-Ray Computed Tomography” in Applications of X-Ray Computed Tomography in the Geosciences, F. Mees, R. Swennen, M. Van Geet, and P. Jacobs (Eds.), Geological Soc. Special Publications, 215 (London, 2003).Google Scholar
  50. 50.
    T. Sander, H. H. Gerke, and H. Rogasik, “Assessment of Chinese Paddy-Soil Structure Using X-Ray Computed Tomography,” Geoderma 145, 303–314 (2008).CrossRefGoogle Scholar
  51. 51.
    S. Schlüter, U. Weller, and H. J. Vogel, “Segmentation of X-Ray Microtomography Images of Soil Using Gradient Masks,” Comput. Geosci. 36, 1246–1251 (2010).CrossRefGoogle Scholar
  52. 52.
    S. Schrader, H. Rogasik, I. Onasch, and D. Jegou, “Assessment of Soil Structural Differentiation around Earthworm Burrows by Means of X-Ray Tomography and Scanning Electron Microscopy,” Geoderma 137, 378–387 (2007).CrossRefGoogle Scholar
  53. 53.
    S. Sleutel, V. Cnudde, B. Masschaele, J. Vlassenbroek, M. Dierick, L. van Hoorebeke, P. Jacobs, and S. de Neve, “Comparison of Different Nano- and Micro-Focus X-Ray Computed Tomography Set-Ups for the Visualization of the Soil Microstructure and Soil Organic Matter,” Comput. Geosci., 931–938 (2008).Google Scholar
  54. 54.
    G. Stoops, Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Sci. Soc. Am., Inc (Madison, WI, 2003).Google Scholar
  55. 55.
    R. Tippkötter, T. Eickhorst, H. Taubner, B. Gredner, G. Rademaker, “Detection of Soil Water in Macropores of Undisturbed Soil Using Microfocus X-Ray Tube Computerized Tomography (μCT),” Soil Tillage Res. 105, 12–20 (2009).CrossRefGoogle Scholar
  56. 56.
    S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002).Google Scholar
  57. 57.
    J. K. Torrance, T. Elliot, R. Martin, and R. J. Heck, “X-Ray Computed Tomography of Frozen Soil,” Cold Regions Sci. Technol. 53, 75–82 (2008).CrossRefGoogle Scholar
  58. 58.
    R. Udawatta and S. H. Anderson, “CT-Measured Pore Characteristics of Surface and Subsurface Soils Influenced by Agroforestry and Grass Buffers,” Geoderma 145, 381–389 (2008).CrossRefGoogle Scholar
  59. 59.
    I. A. M. Yanusa, M. Braun, and R. Lawrie, “Amendment of Soil Coal Fly Ash Modified the Burrowing Habits of Two Earthworm Species,” Appl. Soil Ecol. 42, 63–68 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • K. M. Gerke
    • 1
    • 2
  • E. B. Skvortsova
    • 2
  • D. V. Korost
    • 2
    • 3
  1. 1.Institute of Geosphere DynamicsRussian Academy of SciencesMoscowRussia
  2. 2.Dokuchaev Soil Science InstituteRussian Academy of Agricultural SciencesMoscowRussia
  3. 3.Geological FacultyLomonosov Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations