Eurasian Soil Science

, Volume 45, Issue 1, pp 45–55 | Cite as

Suprapermafrost organic-accumulative horizons in the tundra cryozems of northern Yakutia

  • A. V. Lupachev
  • S. V. Gubin
Genesis and Geography of Soils


Organic-accumulative horizons above the permafrost table have been described in the profiles of cryozems developing on interfluve surfaces in the tundra zone of northern Yakutia. The organic matter content in these suprapermafrost horizons is comparable with or even exceeds the organic matter content in the surface horizons. The dynamics of seasonal thawing specify the annual involvement of the material of these horizons into the zone of active pedogenesis or its exclusion from it in the case of their frozen state. The analysis of the morphology of cryozems of the Kolyma Lowland along a 1000-km-long sublatitudinal transect shows that the accumulation and migration of raw organic materials (predominantly, differently decomposed peat) above the permafrost table take place upon the particular combinations of local factors (the soil moistening, ice content, freezing-thawing conditions, nanotopography of the permafrost table, etc.) at the lower boundary of the active layer. The well-pronounced accumulation of the raw organic material in the suprapermafrost horizons can be reflected in the substantive characteristics of these horizons and should be taken into account in classification decisions.


EURASIAN Soil Science Organic Horizon Tundra Zone Permafrost Table Transient Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bockheim, J. M. Kimble, Ch. Tarnocai, and C.-L. Ping, “Gelisols: A New Order of Soil Taxonomy,” in Results of Fundamental Investigations of the Earth’s Cryosphere in Arctic and Subarctic Regions (Mater. Int. Conf. in Pushchino, Apr. 23–26, 1996) (Nauka, Sib. otd., Novosibirsk, 1997), pp. 287–297 [in Russian].Google Scholar
  2. 2.
    Vasil’evskaya, V.D., Soil Formation in the Tundra of Central Siberia (Nauka, Moscow, 1980) [in Russian].Google Scholar
  3. 3.
    G. F. Gravis, “Frost Cracking of Soils and the Formation of Humus Flows,” in Permafrost and Related Phenomena in the Yakutian Autonomous Republic (Izd. Akad. Nauk SSSR, Moscow, 1962), pp. 112–123 [in Russian].Google Scholar
  4. 4.
    S. V. Gubin, “Dynamics of the Permafrost Table and the Problem of Humus Retention in Tundra Soils of the Northeast of Russia,” in Problems of Soil Evolution (Mater. IV All-Russia Conf.) (Pushchino, 2003), pp. 168–172 [in Russian].Google Scholar
  5. 5.
    S. V. Gubin, Paleogeographic Aspects of Soil Formation on Coastal Lowlands in the North of Yakutia (Pushchino, 1987) [in Russian].Google Scholar
  6. 6.
    S. V. Gubin, Extended Abstract of Doctoral Dissertation in Biology (Pushchino, 1999) [in Russian].Google Scholar
  7. 7.
    S. V. Gubin, A. V. Lupachev, A. O. Alekseev, and P. I. Kalinin, “Lateral Transfer of Substances above the Permafrost Table in Permafrost-Affected Soils,” Tez. Dokl. Nauchn. Konf. Russia in the IPY 2007/2008 (Oct. 3–5, 2006) (Sochi, 2006), pp. 3–5 [in Russian].Google Scholar
  8. 8.
    S. V. Gubin and A. V. Lupachev, “Soil Formation and the Underlying Permafrost,” Pochvovedenie, No. 6, pp. 655–667 (2008) [Eur. Soil Sci. 41 (6), 574–585 (2008)].Google Scholar
  9. 9.
    L. G. Elovskaya, E. I. Petrova, and L. V. Teterina, Soils of Northern Yakutia (Nauka, Novosibirsk, 1979) [in Russian].Google Scholar
  10. 10.
    T. N. Zhestkova, M. I. Zabolotskaya, and V. V. Rogov, Cryogenic Structure of Frozen Rocks (Izd. Mosk. Gos. Univ., Moscow, 1980) [in Russian].Google Scholar
  11. 11.
    I. V. Ignatenko and B. N. Norin, “Dynamics of Patchy Tundra in the Northeast of Europe,” Probl. Botaniki 11, 72–90 (1969).Google Scholar
  12. 12.
    T. N. Kaplina, O. V. Lakhtina, and N. O. Rybakova, “History of Landscape and Permafrost Development in the Kolyma Lowland according to the Radiocarbon, Cryolithological, and Palynological Data,” in Geochronology of the Quaternary Period (Nauka, Moscow, 1980), pp. 171–189 [in Russian].Google Scholar
  13. 13.
    Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  14. 14.
    N. S. Mergelov, Extended Abstract of Candidate’s Dissertation in Geography (Moscow, 2007) [in Russian].Google Scholar
  15. 15.
    S. V. Tomirdiaro, “Cryogenic Evolution of Plains in the Northeast of Asia in the Late Glacial Epoch and in the Holocene,” Izv. Vses. Geogr. O-va, No. 2, pp. 124–132 (1975).Google Scholar
  16. 16.
    D. G. Fedorov-Davydov, S. P. Davydov, A. I. Davydova, et al., “Spatiotemporal Regularities of Seasonal Soil Thawing in the North of the Kolyma Lowland,” Kriosfera Zemli 8(4), pp. 15–26 (2004) [in Russian].Google Scholar
  17. 17.
    L. A. Fominykh, “The Peculiarities of Soil Formation in the Kolyma Tundra,” Pochvovedenie, No. 8, pp. 917–925 (1997) [Eur. Soil Sci. 30 (8), 811–819 (1997)].Google Scholar
  18. 18.
    A. L. Kholodov, E. M. Rivkina, D. A. Gilichinskii, et al., “Assessment of the Amount of Organic Matter Discharged into the Arctic Basin upon Thermal Abrasion of Coasts of the Laptev and East Siberian Seas,” Kriosfera Zemli 7(3), pp. 3–12 (2003).Google Scholar
  19. 19.
    N. A. Khotinskii, “Holocene Chronosequences: Debatable Problems of Paleogeography of the Holocene,” in Development of the Environment of the USSR in the Late Pleistocene and Holocene (Nauka, Moscow, 1982), pp. 207–219 [in Russian].Google Scholar
  20. 20.
    Yu. L. Shur, Upper Permafrost Layer and Thermokarst (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  21. 21.
    V. K. Yanovskii, “The Pechora Expedition to Determine the Southern Boundary of Permafrost,” Report of the Committee on Permafrost Studies (Izd. Akad. Nauk SSSR, Moscow, 1933) [in Russian].Google Scholar
  22. 22.
    A. Alekseev, T. Alekseeva, V. Ostroumov, et al., “Mineral Transformations in Permafrost-Affected Soils, North Kolyma Lowland, Russia,” Soil Sci. Soc. Am. J. 67, pp. 596–605 (2003).CrossRefGoogle Scholar
  23. 23.
    J. G. Bockheim and C. Tarnocai, “Recognition of Cryoturbation for Classifying Permafrost-Affected Soils,” Geoderma 81, pp. 281–293 (1998).CrossRefGoogle Scholar
  24. 24.
    D. G. Fyodorov-Davydov, A. L. Kholofov, V. E. Ostroumov, et al., “Seasonal Thaw of Soils in the North Yakutian Ecosystems,” Ninth Int. Conf. on Permafrost (Fairbanks), 1, 481–486 (2008).Google Scholar
  25. 25.
    Y. L. Shur and C. L. Ping, “Permafrost Dynamics and Soil Formation,” Proc. Meet. on Classification, Correlation and Management of Permafrost-Affected Soils, July 18–30, 1993, Alaska, USA and Yukon and North-West Territories, Canada (USDA, SCS, Ottawa, 1994), Vol. 1, pp. 112–117.Google Scholar
  26. 26.
    Y. M. Shur, K. M. Hinkel, and F. E. Nelson, “The Transient Layer: Implications for Geocryology and Climate Change Science,” Perm. Perigl. Proc. 16, pp. 5–17 (2005).CrossRefGoogle Scholar
  27. 27.
    C. Tarnocai, J. G. Canadell, E. A. G. Schuur, et al., “Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region,” Glob. Biogeochem. Cycles 23(2), GB2023 (2009).CrossRefGoogle Scholar
  28. 28.
    The Canadian System of Soil Classification 2nd Ed. (Agriculture Canada Publ., Ottawa, Ont., 1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Physicochemical and Biological Problems in Soil SciencesRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations