Skip to main content
Log in

Development of a Collector with Multistage Recuperation for Gyrotron

  • ELECTRON AND ION OPTICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A four-stage collector system is developed for the experimental gyrotron at the Peter the Great St. Petersburg Polytechnic University based on spatial separation of electrons with different energies in crossed electric and magnetic fields. The conditions of use of this system for the efficient recuperation of electron residual energy in a spent beam are determined. The numerical simulation of the recuperator and the analysis of the electric and magnetic field distribution in the gyrotron collector region are accomplished. Theoretical estimations and trajectory analysis of the helical electron beam show that the system developed provides the electron residual energy recuperation necessary to achieve total gyrotron efficiency over 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Electronic resource: http://www.cst.com.

REFERENCES

  1. M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers, update (2017).

  2. V. E. Zapevalov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 49, 864 (2006).

    Google Scholar 

  3. M. V. Morozkin, M. Y. Glyavin, G. G. Denisov, and A. G. Luchinin, Int. J. Infrared Millimeter Waves 29, 1004 (2008).

    Article  Google Scholar 

  4. I. Gr. Pagonakis, J.-P. Hogge, S. Alberti, et al., IEEE Trans. Plasma Sci. 36, 469 (2008).

    Article  Google Scholar 

  5. C. Wu, I. G. Pagonakis, K. A. Avramidis, et al., Phys. Plasmas 25, 033108 (2018).

    Article  Google Scholar 

  6. C. Wu, I. G. Pagonakis, D. Albert, et al., Phys. Plasmas 26, 013108 (2019).

    Article  Google Scholar 

  7. O. I. Louksha and P. A. Trofimov, Tech. Phys. Lett. 41, 884 (2015).

    Article  Google Scholar 

  8. O. I. Louksha and P. A. Trofimov, in Proc. 18th Int. Vacuum Electronics Conf. (IVEC 2017), London, Apr. 24–26, 2017 (IEEE, New York, 2017).

  9. O. I. Louksha, G. G. Sominski, A. V. Arkhipov, et al., IEEE Trans. Plasma Sci. 44, 1310 (2016).

    Article  Google Scholar 

  10. K. Sakamoto, M. Tsuneoka, A. Kasugai, et al., Phys. Rev. Lett. 73 (26), 3532 (1994).

    Article  Google Scholar 

  11. O. I. Louksha, D. B. Samsonov, G. G. Sominskii, and S. V. Semin, Tech. Phys. 58, 751 (2013).

    Article  Google Scholar 

  12. D. V. Kas’yanenko, O. I. Louksha, B. Piosczyk, G. G. Sominsky, and M. Thumm, Radiophys. Quantum Electron. 47, 414 (2004).

    Article  Google Scholar 

  13. S. I. Molokovskii and A. D. Sushkov, Intensive Electron and Ionic Beams (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  14. O. I. Louksha, D. B. Samsonov, G. G. Sominskii, and A. A. Tsapov, Tech. Phys. 57, 835 (2012).

    Article  Google Scholar 

  15. O. I. Luksha, Quantum Electron. 52, 386 (2009).

    Google Scholar 

  16. V. N. Manuilov, M. V. Morozkin, O. I. Luksha, and M. Y. Glyavin, Infrared Phys. and Technol. 91 (1), 46 (2018).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 16-12-10010-P. Some of the results were obtained using the computing resources of the Supercomputer Center, Peter the Great St. Petersburg Polytechnic University (http://www.scc.spbstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Louksha.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louksha, O.I., Trofimov, P.A. Development of a Collector with Multistage Recuperation for Gyrotron. J. Commun. Technol. Electron. 65, 950–955 (2020). https://doi.org/10.1134/S1064226920080082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920080082

Navigation