Synthesis of a Three-Channel Waveguide Microwave Multiplexer with a Modified Structure

  • A. V. Vorob’evEmail author
  • B. M. Kats
  • V. V. Komarov
  • V. P. Meshchanov


The synthesis procedure of a waveguide multiplexer with a modified structure is considered. Compared with standard methods, the approach to the synthesis of this structure is based on the principle of decomposition, to simplify and accelerate the development of complicated devices. To check the performance ability of a proposed structure, the three-channel X-band waveguide multiplexer with a modified design of channel filters was synthesized. Design and experimental results are compared.



  1. 1.
    M. B. Teresa, Satellite Communications Payload and System (Wiley, New York, 2012).Google Scholar
  2. 2.
    J. R. M. Vaughan, IEEE Trans. Electron Devices 35, 1172 (1988).CrossRefGoogle Scholar
  3. 3.
    R. J. Cameron and M. Yu, IEEE Microwave Mag. 8 (5), 46 (2007).CrossRefGoogle Scholar
  4. 4.
    V. I. Chekhutskii, Molodezhn. Nauch-Tekh. Vestn., No. 10, 53 (2013). Google Scholar
  5. 5.
    R. J. Cameron and J. D. Rhodes, IEEE Trans. Microwave Theory Tech. 29, 51 (1981).CrossRefGoogle Scholar
  6. 6.
    Bosch Telecom GmbH (now Teasat-Spacecom GmbH). Passive Components for Space Applications. Product brochure (1999), p. 8. downloads/Bosch%20Passive%20Components.pdf.Google Scholar
  7. 7.
    A. Panariello, M. Yu, and C. Ernst, IEEE Trans. Microwave Theory Tech. 61, 382 (2013).CrossRefGoogle Scholar
  8. 8.
    Yi-Chi Shih, IEEE Trans. Microwave Theory Tech. 32, 695 (1984). CrossRefGoogle Scholar
  9. 9.
    A. V. Kondratenko and M. L. Shevlyakov, Kompon. i Tekhnol., No. 11, 16 (2008).Google Scholar
  10. 10.
    M. B. Manuilov and K. V. Kobrin, in Actual Problems of Electron Instrument Making (Proc. Int. Sci.-Techn. Conf., Saratov, Sept. 22–23, 2016) (Saratov. Gos. Tekh. Univ., Saratov, 2016), Vol. 1, p. 297.Google Scholar
  11. 11.
    G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (McGraw-Hill, New York, 1964; Svyaz’, Moscow, 1972).Google Scholar
  12. 12.
    M. Uhm, J. Lee, I. Yom, and J. Kim, ETRI J. 28 (2), 223 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Cogollos, P. Soto, V. E. Boria, et al., IEEE Trans. Microwave Theory Tech. 63, 2540 (2015).Google Scholar
  14. 14.
    M. Brumos, S. Cogollos, M. Martinez, et al., in Proc. IEEE Microwave Symp. Tampa Bay, FL, June 1–6, 2014 (IEEE, New York, 2014), p. 76.Google Scholar
  15. 15.
    A. V. Kondratenko, A. I. Miller, and M. L. Shevlyakov, Kompon. i Tekhnol., No. 7, 96 (2009). Google Scholar
  16. 16.
    A. A. Kirilenko, S. L. Senkevich, V. I. Tkachenko, and B. G. Tysik, IEEE Trans. Microwave Theory Tech. 42, 1393 (1994).CrossRefGoogle Scholar
  17. 17.
    E. Ofli, R. Vahldieck, and S. Amari, IEEE Trans. Microwave Theory Tech. 53, 843 (2005).CrossRefGoogle Scholar
  18. 18.
    B. M. Kats, A. V. Vorob’ev, and V. P. Meshchanov, Radiotekhnika, No. 10, 195 (2016).Google Scholar
  19. 19.
    Computer Simulation Technology AG. CST Microwave Studio—Workflow and Solver Overview (2015), p. 7.Google Scholar
  20. 20.
    NI AWR Design Environment. (Cited Sept.: 16.09.2017).Google Scholar
  21. 21.
    M. P. Apin, S. I. Bokov, N. A. Bushuev, et al., Microwave Filters and Multiplexers for Systems of Space Communication, Ed. by V. P. Meshchanov (Radiotekhnika, Moscow, 2017) [in Russian].Google Scholar
  22. 22.
    M. Hiebel, Fundamentals of Vector Network Analysis, 5th ed. (Rohde & Schwarz GmbH, Germany, 2008).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Vorob’ev
    • 1
    • 2
    Email author
  • B. M. Kats
    • 2
  • V. V. Komarov
    • 1
    • 2
  • V. P. Meshchanov
    • 2
  1. 1.Yuri Gagarin State Technical University of SaratovSaratovRussia
  2. 2.R&D Enterprise NIKA-SVChSaratovRussia

Personalised recommendations