Advertisement

The Natural Waves of a 1D Lattice of Rectangular Dielectric Rods

  • S. E. BankovEmail author
ELECTRODYNAMICS AND WAVE PROPAGATION
  • 24 Downloads

Abstract

The problem about the eigen waves of the infinite periodic lattice of rectangular dielectric rods located in a plane waveguide is considered. The boundary value problem is solved with the partial domain method, and the dispersion equation for the propagation constant of an eigen wave is obtained. The fields of eigen waves are found. The expression for the characteristic impedance of the fundamental wave is obtained. Results of the numerical investigation of the behavior of the moderating ratio and the characteristic impedance of the fundamental wave of the lattice are presented.

Notes

ACKNOWLEDGEMENTS

Performed in accordance with state research project 0030-2019-0014 and by the Russian Foundation for Basic Research, project no. 18-07-00655a.

REFERENCES

  1. 1.
    D. Schaubert, S. Kasturi, M. W. Elsallal, and W. van Cappellen, in Proc. EuCAP-2006, Nice, France, Nov. 6−10, 2006 (IEEE, New York, 2006), p. 1.Google Scholar
  2. 2.
    D. I. Voskresenskii, Yu. V. Kotov, and E. V. Ovchinnikova, Antenny, No. 11, 7 (2005).Google Scholar
  3. 3.
    H. Holter, T. Chio, and D. H. Schaubert, IEEE Trans. Antennas Propag. 48, 122 (2000).CrossRefGoogle Scholar
  4. 4.
    S. E. Bankov, in Proc. 4th All-Russian Microwave, Moscow, Nov. 2016 (Kotel’nikov IRE RAN, Moscow, 2016), p. 265.Google Scholar
  5. 5.
    H. Holter, T.-H. Chio, and D. H. Schaubert, IEEE Trans. Antennas Propag. 48, 1707 (2000).CrossRefGoogle Scholar
  6. 6.
    S. E. Bankov, V. A. Kaloshin, and K. Z. Nguen, in Proc. 4th All-Russian Microwave, Moscow, Nov. 2016 (Kotel’nikov IRE RAN, Moscow, 2016), p. 410.Google Scholar
  7. 7.
    E. Acedo, E. Garcia, V. González-Posadas, et al., IEEE Trans. Antennas Propag. 58, 68 (2010).CrossRefGoogle Scholar
  8. 8.
    S. E. Bankov, J. Commun. Technol. Electron. 63, 524 (2018).CrossRefGoogle Scholar
  9. 9.
    S. E. Bankov, Zh. Radielektron. (2017). http://jre.cplire.ru/jre/nov17/12/text.pdf.Google Scholar
  10. 10.
    S. E. Bankov and G. G. Grachev, J. Commun. Technol. Electron. 59, 119 (2014).CrossRefGoogle Scholar
  11. 11.
    Yu. P. Vinnichenko, L. N. Zakhar’ev, A. A. Lemanskii, et al. Radiotekh. Elektron. (Moscow) 19, 1583 (1974).Google Scholar
  12. 12.
    Yu. P. Vinnichenko, L. N. Zakhar’ev, A. A. Lemanskii, et al. Radiotekh. Elektron. (Moscow) 20, 1804 (1975).Google Scholar
  13. 13.
    V. M. Krekhtunov and B. A. Tyunin, Radiotekh. Elektron. (Moscow) 28, 209 (1983).Google Scholar
  14. 14.
    S. E. Bankov, V. A. Kurushin, and E. M. Guttsait, Computation of Optical and Microwave Problems with Help HFSS (Orkada, Moscow, 2012) [in Russian].Google Scholar
  15. 15.
    S. E. Bankov, Arrays with Series Feeding (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  16. 16.
    G. T. Markov and A. F. Chaplin, Excitation of Electromagnetic Waves (Radio i Svyaz’, Moscow, 1983) [in Russian].Google Scholar
  17. 17.
    V. V. Nikol’skii, Variational Methods for Inner Problems of Electrodynamics (Nauka, Moscow, 1967) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations