Advertisement

Near-Infrared Luminescence of Bismuth in Silica-Based Glasses with Different Additives

  • E. A. SavelyevEmail author
  • O. V. Butov
  • V. O. Yapaskurt
  • K. M. Golant
PHYSICAL PROCESSES IN ELECTRON DEVICES
  • 2 Downloads

Abstract

The near-infrared (NIR) luminescence spectra and changes caused in them by an exposure to ArF excimer laser radiation were studied in bismuth-doped silica-based glasses containing Al, P or Ge and B additives. Experiments were conducted using specimens in the form of optical waveguides synthesized by surface plasma chemical vapor deposition (SPCVD), using bismuth-doped glass sample as the light-guiding core. Excited by ~808, ~904, and ~970 nm wavelength laser diodes, the NIR luminescence spectra were recorded in the 700–2000 nm wavelength range at temperatures of 105 and 300 K. The UV laser treatment was found to cause changes in both integrated intensity and spectrum shape of NIR luminescence associated with bismuth impurities. The observed changes are discussed with the assumption of photo-induced reconfiguring of different bismuth inclusions, which might present in the glass network in the form of separate ions and atoms, interstitial molecules, and bulk semiconductor nanoclusters.

Keywords:

bismuth clustering silica near-infrared luminescence SPCVD 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Basic Research Foundation (project no. 16-07-00371).

REFERENCES

  1. 1.
    Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. B 40 (3), L279–L281 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys.: Condens. Matter. 21, 285106–285106-6 (2009).Google Scholar
  3. 3.
    X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13, 1628–1634 (2005).CrossRefGoogle Scholar
  4. 4.
    M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband in frared luminescence,” Opt. Mater. 29, 556–561 (2007).CrossRefGoogle Scholar
  5. 5.
    V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33, 1488–1490 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Sun, T. Yonezawa, M. M. Gillett-Kunnath, Y. Sakka, N. Shirahata, S. C. R. Gui, M. Fujii, and S. C. Sevov, “Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing [Bi2]2– dimers,” J. Mater. Chem. 22, 20 175–20 178 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).CrossRefGoogle Scholar
  8. 8.
    A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalentmonocation Bi+ and cluster \({\text{Bi}}_{5}^{{3 + }}\) luminescence in AlCl3/ZnCl2/BiCl3 chloride glass,” Opt. Express 20, 7212–7220 (2012).CrossRefGoogle Scholar
  9. 9.
    M. A. Hughes, R. M. Gwilliam, K. Homewood, B. Gholipour, D. W. Hewak, T. Lee, S. R. Elliott, T. Suzuki, Y. Ohishi, T. Kohoutek, and R. J. Curry, “On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses,” Opt. Express 21, 8101–8115 (2013).CrossRefGoogle Scholar
  10. 10.
    R. Kelting, A. Baldes, U. Schwarz, T. Rapps, D. Schooss, P. Weis, C. Neiss, F. Weigend, and M. M. Kappes, “Structures of small bismuth cluster cations,” J. Chem. Phys. 136, 154309–154309-10 (2012).CrossRefGoogle Scholar
  11. 11.
    H. K. Yuan, H. Chen, A. L. Kuang, Y. Miao, and Z. H. Xiong, “Density-functional study of small neutral and cationic bismuth clusters Bin and \({\text{Bi}}_{n}^{ + }\) (n = 2–24),” J. Chem. Phys. 128, 094305–094305-10 (2008).CrossRefGoogle Scholar
  12. 12.
    R. K. Verma, K. Kumar, and S. B. Rai, “Near infrared induced optical heating in laser ablated Bi quantum dots,” J. Colloid Interface Sci. 390, 11–16 (2013).CrossRefGoogle Scholar
  13. 13.
    R. Butkutė, G. Niaura, E. Pozingytė, B. Čechavičius, A. Selskis, M. Skapas, V. Karpus, and A. Krotkus, “Bismuth quantum dots in annealed GaAsBi/AlAs quantum wells,” Nanoscale Res. Lett. 12, 1–7 (2017).CrossRefGoogle Scholar
  14. 14.
    R. Butkutė, K. Stašys, V. Pačebutas, B. Čechavičius, R. Kondrotas, A. Geižutis, and A. Krotkus, “Bismuth quantum dots and strong infrared photoluminescence in migration-enhanced epitaxy grown GaAsBi-based structures,” Opt. Quantum Electron. 47, 873–882 (2015).CrossRefGoogle Scholar
  15. 15.
    D. Velasco-Arias, I. Zumeta-Dubé, D. Díaz, P. Santiago-Jacinto, V. Ruiz-Ruiz, S. Castillo-Blum, and L. Rendon, “Stabilization of strong quantum confined colloidal bismuth nanoparticles, one-pot synthesized at room conditions,” J. Phys. Chem. C 116, 14717–14727 (2012).CrossRefGoogle Scholar
  16. 16.
    A. J. Levin, M. R. Black, and M. S. Dresselhaus, “Indirect L to T point optical transition in bismuth nano-wires,” Phys. Rev. B: Condens. Matter. 79, 165117-1–165117-10 (2009).Google Scholar
  17. 17.
    Ph. Hofmann, “The surfaces of bismuth: Structural and electronic properties,” Prog. Surf. Sci. 81(5), 191–245 (2006).CrossRefGoogle Scholar
  18. 18.
    A. P. Bazakutsa and K. M. Golant, “Near-infrared luminescence of bismuth in fluorine-doped-core silica fibres,” Opt. Express 23, 3818–3830 (2015).CrossRefGoogle Scholar
  19. 19.
    A. P. Bazakutsa, O. V. Butov, E. A. Savel’ev, and K. M. Golant, “Specific features of IR photoluminescence of bismuth-doped silicon dioxide synthesized by plasmachemical method,” J. Commun. Technol. Electron. 57, 743–750 (2012).CrossRefGoogle Scholar
  20. 20.
    Q. Li, S. J. Xu, W. C. Cheng, M. H. Xie, and S. Y. Tong, “Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys,” Appl. Phys. Lett. 79, 1810–1812 (2001).CrossRefGoogle Scholar
  21. 21.
    P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, “‘Blue’ temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett. 71, 569–571 (1998).CrossRefGoogle Scholar
  22. 22.
    Q. Li, S. J. Xu, M. H. Xie, and S. Y. Tong, “Origin of the ‘S-shaped’ temperature dependence of luminescent peaks from semiconductors,” J. Phys.: Condens. Matter. 17 (30), 4853–4858 (2005).Google Scholar
  23. 23.
    T. Lu, Z. Ma, C. Du, Y. Fang, H. Wu, Y. Jiang, L. Wang, L. Dai, H. Jia, W. Liu, and H. Chen, “Temperature-dependent photoluminescence in light-emitting diodes,” Sci. Rep. 4, 1–7 (2014).Google Scholar
  24. 24.
    P. Dey, J. Paul, J. Bylsma, D. Karaiskaj, J. M. Luther, M. C. Beard, and A. H. Romero, “Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots,” Solid State Commun. 165, 49–54 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Hosono, H. Kawazoe, and J. Nishii, “Defect formation in SiO2:GeO2 glasses studied by irradiation with excimer laser light,” Phys. Rev. B: Condens. Matter 53 (18), R11921–R11923 (1996).CrossRefGoogle Scholar
  26. 26.
    M. Fujimaki, T. Watanabe, T. Katoh, T. Kasahara, N. Miyazaki, Y. Ohki, and H. Nishikawa, “Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings,” Phys. Rev. B: Condens. Matter. 57, 3920–3926 (1998).CrossRefGoogle Scholar
  27. 27.
    A. N. Trukhin, J. Teteris, A. Fedotov, D. L. Griscom, and G. Buscarino, “Photosensitivity of SiO2–Al and SiO2–Na glasses under ArF (193 nm) laser,” J. Non-Cryst. Solids 355(18-21), 1066–1074 (2009).CrossRefGoogle Scholar
  28. 28.
    K. M. Golant, “Surface plasma chemical vapor deposition: 20 years of application in glass synthesis for lightguides (a review),” in Presented at the XXI Int. Congress on Glass, Strasbourg, France, July 16, 2007. Google Scholar
  29. 29.
    P. McMillan, “Structural studies of silicate glasses and melts - applications and limitations of Raman spectroscopy,” Am. Mineral. 69 (6-8), 622–644 (1984).Google Scholar
  30. 30.
    V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: First-principle study,” Opt. Mater. Express 3, 1059–1074 (2013).CrossRefGoogle Scholar
  31. 31.
    L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149 77–95 (1992).CrossRefGoogle Scholar
  32. 32.
    V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass, Quantum Electron. 41, 1080–1082 (2011).CrossRefGoogle Scholar
  33. 33.
    V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D: Appl. Phys. 42, 095410-1–095410-7 (2009).Google Scholar
  34. 34.
    H. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from \({\text{Bi}}_{8}^{{2 + }}\) and \({\text{Bi}}_{5}^{{3 + }}\) stabilized by [AlCl4] in molecular crystals,” J. Mater. Chem. 22 (25), 12837–12841 (2012).CrossRefGoogle Scholar
  35. 35.
    C. T. Huang and R. Y. Lin, “Thermodynamics of the Na2O–P2O5 system,” Metall. Mater. Trans. B 20, 197–204 (1989).CrossRefGoogle Scholar
  36. 36.
    E. L. Kozhina, and M. M. Shultz, “Thermodynamic properties of sodium-containing glassforming oxide melts,” Ceram. Silik. 44 (3), 91–97 (2000).Google Scholar
  37. 37.
    H. Sun, Y. Sakka, N. Shirahata, Y. Matsushita, K. Deguchi, and T. Shimizu, “NMR, ESR, and luminescence characterization of bismuth embedded zeolites Y,” J. Phys. Chem. C 117, 6399–6408 (2013).CrossRefGoogle Scholar
  38. 38.
    V. V. Tugushev and K. M. Golant, “Excited oxygen-deficient center in silicon dioxide as structurally non-rigid, mixed-valence complex,” J. Non-Cryst. Solids 241, 166–173 (1998).CrossRefGoogle Scholar
  39. 39.
    R. Cao, M. Peng, L. Wondraczek, and J. Qiu, “Superbroad near-to-mid-infrared luminescence from \({\text{Bi}}_{5}^{{3 + }}\) in Bi5(AlCl4)3,” Opt. Express 20, 2562–2571 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Savelyev
    • 1
    Email author
  • O. V. Butov
    • 1
  • V. O. Yapaskurt
    • 1
    • 2
  • K. M. Golant
    • 1
  1. 1.Kotel’nikov Institute of Radioengineering and Electronics of RASMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations