Advertisement

Effect of Oblique Projection Beamforming on the Achievable Rate in Massive MIMO System

  • N. Smaili
  • M. Djeddou
  • K. Ghanem
  • A. Azrar
THEORY AND METHODS OF SIGNAL PROCESSING
  • 20 Downloads

Abstract

The mitigation of interference is an ubiquitous problem in wireless communication systems for which a number of signal processing techniques have been developed. This problem is made more critical in the presence of an increased numbers of interfering cells, interfering users and antennas, as it is the case in massive MIMO systems. As a consequence, the conventional methods see their performance degrades. In this paper, we propose to incorporate Oblique Projection (OP) with conventional ZF beamforming in the downlink of a massive MIMO communication system and investigate the achievable data rate at the reception. Resulting beamformer uses oblique projection spaces to separate the received signal into two subspaces: the one pertaining to the desired user signal and the other to interference signals, thus achieving a high degree of interference suppression. It is shown that the OP beamforming performs better than Maximum Ratio Transmitting (MRT) and the transmit MMSE beamforming counterparts.

REFERENCES

  1. 1.
    J. Hoydis, S. Ten. Brink, and M. Debbah, “Massive MIMO: How many antennas do we need?” in Communication, Control, and Computing (Allerton), (Proc. 49th Annual Allerton Conf. IEEE, 2011) (IEEE, New York, 2011), pp. 545–550.Google Scholar
  2. 2.
    F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, et al., “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Processing Mag. 30, 40–60 (2013).Google Scholar
  3. 3.
    T. L. Marzetta, G. Caire, and M. Debbah, I. Chih. Lin, and S. K. Mohammed, “Special issue on massive MIMO”, J. Commun Networks 15, 333–337 (2013).Google Scholar
  4. 4.
    F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52, 74–80 (2014).CrossRefGoogle Scholar
  5. 5.
    T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, et al., “Millimeter wave mobile communications for 5G cellular: It will work,” IEEE Access, No. 1, 335–349 (2013).CrossRefGoogle Scholar
  6. 6.
    J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, et al., ‘What will 5G be?’, IEEE J. on Selected Areas in Commun. 32, 1065–1082 (2014).CrossRefGoogle Scholar
  7. 7.
    E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag. 52 , 186–195 (2014).CrossRefGoogle Scholar
  8. 8.
    T. L. Marzetta, “Massive MIMO: An introduction”, Bell Labs Tech. J., No. 20, 11–22 (2015).Google Scholar
  9. 9.
    C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, et al., “Argos: Practical many-antenna base stations,” in Proc. 18th Ann. Int. Conf. on Mobile Computing and Networking, Istanbul, Turkey, 2012 (ACM, 2012), pp. 53–64.Google Scholar
  10. 10.
    Z. Zhang, X. Wang, K. Long, A. V. Vasilakos, and L. Hanzo, “Large-scale mimobased wireless backhaul in 5G networks,” IEEE Wireless Commun. 22 (5), 58–66 (2015).CrossRefGoogle Scholar
  11. 11.
    S. Kayalar and H. L. Weinert, “Oblique projections: Formulas, algorithms, and error bounds,” Math. Control, Signals and Systems 2, 33–45 (1989).zbMATHGoogle Scholar
  12. 12.
    R. T. Behrens and L. L. Scharf, “Signal processing applications of oblique projection operators,” IEEE Trans. Signal Process. 42, 1413–1424 (1994).Google Scholar
  13. 13.
    P. Vandaele and M. Moonen, “Two deterministic blind channel estimation algorithms based on oblique projections,” Signal Process. 80, 481–495 (2000).zbMATHGoogle Scholar
  14. 14.
    X. Yu and L. Tong, “Joint channel and symbol estimation by oblique projections,” IEEE Trans. Signal Process. 49, 3074–3083 (2001).Google Scholar
  15. 15.
    K. Meraim, H. Maitre, P. Duhamel, et al., “Blind multichannel image restoration using oblique projections,” in Sensor Array and Multichannel Signal Processing Workshop Proc., Rosslyn, Virginia, Aug. 2002. (IEEE, New York, 2002), pp. 125–129.Google Scholar
  16. 16.
    P. C. Hansen and S. H. Jensen, “Prewhitening for rank-deficient noise in subspace methods for noise reduction,” IEEE Trans. Signal Process. 53, 3718–3726 (2005).Google Scholar
  17. 17.
    R. Boyer and G. Bouleux, “Oblique projections for direction-of-arrival estimation with prior knowledge,” IEEE Trans. Signal Process. 56, 1374–1387 (2008).Google Scholar
  18. 18.
    H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Aspects of favorable propagation in massive MIMO,” in Proc. 22nd Eur. IEEE, Signal Processing Conf. (EUSIPCO) Lisbon, Sept. 1–5, Portugal, 2014 (IEEE, New York, 2014), pp. 76–80.Google Scholar
  19. 19.
    D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu, “Multi-cell mimo cooperative networks: A new look at interference,” IEEE J. Selected Areas in Commun. 28, 1380–1408 (2010).Google Scholar
  20. 20.
    H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell multi-antenna wireless system,” IEEE Trans. Wireless Commun. 9, 1748–1759 (2010).Google Scholar
  21. 21.
    L. Venturino, N. Prasad, and X. Wang, “Coordinated linear beamforming in downlink multi-cell wireless networks,” IEEE Trans. Wireless Commun. 9, 1451–1461 (2010).Google Scholar
  22. 22.
    D. Gesbert, S. G. Kiani, A. Gjendemsjo, and G. E. Oien, “Adaptation, coordination, and distributed resource allocation in interference-limited wireless networks,” Proc. IEEE 95, 2393–2409 (2007).Google Scholar
  23. 23.
    L. L. Scharf and M. L. McCloud, “Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise,” IEEE Trans. Signal Process. 50, 2938–2946 (2002).Google Scholar
  24. 24.
    C. H. Wu and S. J. Chern, “Minimum ber block-based precoder design for zeroforcing equalization: An oblique projection framework,” IEEE Trans. Signal Process. 55, 5630–5642 (2007).Google Scholar
  25. 25.
    L. L. Scharf and M. L. McCloud, “Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise,” IEEE Trans. Signal Process. 50, 2938–2946 (2002).Google Scholar
  26. 26.
    T. Bhandari, S. Nagarajan, et al., “Oblique projection-based equalization for ofdm in presence of in-device coexistence interference,” in Emerging Trends in Communication, Control, Signal Processing & Computing Applications (C2SPCA) (Proc. IEEE Int. Conf. 2013) (IEEE, New York, 2013), pp. 1–5.Google Scholar
  27. 27.
    L. L. Scharf and M. L. McCloud, “Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise,” IEEE Trans. Signal Process. 50, 2938–2946 (2002).Google Scholar
  28. 28.
    J. L. Huang, W. H. Fang, and P. W. Cheng, “Oblique projection-based receiver with interference cancellation in ofdm uplink,” in Anti-Counterfeiting, Security and Identification (ASID), (Proc. Int. Conf. IEEE, 2012) (IEEE, New York, 2012), pp. 1–5.Google Scholar
  29. 29.
    C. H. Wu and S. J. Chern, “Minimum ber block-based precoder design for zero forcing equalization: An oblique projection framework,” IEEE Trans. Signal Process. 55, 5630–5642 (2007).Google Scholar
  30. 30.
    E. Bjornson, M. Bengtsson, and B. Ottersten, “Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [lecture notes],” IEEE Signal Proces. Mag. 31, 142–148 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Signal and System IGEE, UMBB UniversityBoumerdesAlgeria
  2. 2.Communication Systems LaboratoryAlgiersAlgeria
  3. 3.System Architecture LaboratoryAlgiersAlgeria

Personalised recommendations