Several Applications of Diamonds in High-Power Optics and Electronics

  • V. E. RogalinEmail author
  • M. I. Krymskii
  • K. M. KrymskiiEmail author


Data on applications of polycrystalline diamonds obtained with the aid of chemical vapor deposition in high-power optics and electronics are presented. Specific features of diamond optics of СО2 lasers, X‑ray mirrors, and heat sinks for high-power electronics are considered.



  1. 1.
    V. E. Rogalin and S. M. Aranchii, Integral, No. 5, 7 (2012).Google Scholar
  2. 2.
    V. G. Ral’chenko and V. I. Konov, Elektronika. Nauka, Tekhnologiya, Biznes, No. 4, 58 (2008).Google Scholar
  3. 3.
    M. P. Shaskol’skaya, Crystallography (Vysshaya Shkola, Moscow, 1984) [in Russian].Google Scholar
  4. 4.
    Natural Diamonds of Russia, Ed. by V.B. Kvaskova (Polyaron, Moscow, 1997) [in Russian].Google Scholar
  5. 5.
    D. Douglas-Hamilton, E. D. Hoad, and J. R. M. Seitz, J. Opt. Soc. Am. 64 (1), 36 (1974).CrossRefGoogle Scholar
  6. 6.
    V. A. Milashev, Diamond. Legends and Reality (Nedra, Leningrad, 1981) [in Russian].Google Scholar
  7. 7.
    E. Anoikin, A. Muhr, A. Bennett, et al., Proc. SPIE 9346, 93460T (2015).CrossRefGoogle Scholar
  8. 8.
    S. Ho, C. S. Yan, Z. Liu, et al., Industrial Diamond Rev. 66, 28 (2006).Google Scholar
  9. 9.
    B. V. Spitsyn and B. V. Deryagin, “Method for growth of diamond faces,” USSR Inventor’s Certificate No. 339134, Byull. Izobret., No. 17, 233 (1980).Google Scholar
  10. 10.
    R. S. Sussman, J. R. Brandon, S. E. Coe, et al., Industrial Diamond Rev. 58(578), 69 (1998).Google Scholar
  11. 11.
    H. Yamada, A. Chayahara, Y. Mokuno, et al., Appl. Phys. Express 3, 051301 (2010).CrossRefGoogle Scholar
  12. 12.
    A. K. Ratnikova, Development of High-Efficiency Heat Sinks Based on Polycrystalline Diamond for High-Power Semiconductor Devices, Cand. Sci. (Phys.) Dissertation (NPP “Istok”, Fryazino, 2012).Google Scholar
  13. 13.
    V. E. Rogalin, E. E. Ashkenazi, A. F. Popovich, et al., Russian Microelectronics 4, 464 (2012).CrossRefGoogle Scholar
  14. 14.
    T. F. Deutsch, J. Electron. Mater. 4, 663 (1975).CrossRefGoogle Scholar
  15. 15.
    A. Yu. Luk’yanov, V. G. Ral’chenko, A. V. Khomich, et al., Kvantov. Elektron. 38, 1171 (2008).CrossRefGoogle Scholar
  16. 16.
    M. V. Rogozhin, V. E. Rogalin, M. I. Krymskii, et al., “High-power laser,” RF Patent No. 2608309, Byull. Izobret., No. 2 (17.01.2017).Google Scholar
  17. 17.
    M. V. Rogozhin, V. E. Rogalin, M. I. Krymskii, and S. A. Filin, Izv. RAN, Ser. Fiz. 80, 1410 (2016).Google Scholar
  18. 18.
    M. V. Rogozhin, V. E. Rogalin and M. I. Krymskii, Opt. and Spectroscopy 122, 843 (2017).CrossRefGoogle Scholar
  19. 19.
    A. V. Sukhadolau, E. V. Ivakin, V. G. Ralchenko, et al., Diamond Relat. Mater. 14, 589 (2005).CrossRefGoogle Scholar
  20. 20.
    I. Ya. Pomeranchuk, Zh. Elektron. Tekh. Fiz. 12, 245 (1942).Google Scholar
  21. 21.
    V. Rat, Ritm, No. 2(51), 33 (2010).Google Scholar
  22. 22.
    V. Granson, Sh. Sumrain, P. Daniel, and Fr. J. Villarreal, Proc. SPIE 6872, 687209 (2008).CrossRefGoogle Scholar
  23. 23.
    V. V. Kononenko, T. V. Kononenko, V. I. Konov, et al., Kvant. Elektron. 26, 158 (1999).CrossRefGoogle Scholar
  24. 24.
    V. V. Parshin, Int. J. Infrared Millimeter Waves 15, 339 (1994).CrossRefGoogle Scholar
  25. 25.
    N. A. Vinokurov, in Generation and Application of Terahertz Radiation, Novosibirsk, Nov. 24–25, 2006 (IYaF im. G.I. Budkera, Novosibirsk, 2006), p. 5.Google Scholar
  26. 26.
    A. A. Kaminskii, V. G. Ralchenko, A. P. Bolshakov, and A. V. Inyushkin, Phys.-Dokl. 60, 437 (2015).CrossRefGoogle Scholar
  27. 27.
    E. E. Ashkinazi, V. V. Bezotosnyi, V. Yu. Bondarev, et al., Kvant. Elektron. 42, 959 (2012).CrossRefGoogle Scholar
  28. 28.
    V. V. Valuev, A. P. Vasil’ev, V. N. Drozdov, et al., Nauchn. Vestn. MIREA, No. 2(5), 4 (2008).Google Scholar
  29. 29.
    S. M. Aranchii, K. M. Krymskii, M. I. Krymskii, and V. E. Rogalin, J. Commun. Technol. Electron. 60, 308 (2015).CrossRefGoogle Scholar
  30. 30.
    Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  31. 31.
    I. A. Artyukov, V. V. Zelentsov, and K. M. Krymskii, “Tables of Pair Materials That May Serve as Components of Multilayer X-ray Mirrors under Normal Incidence in a Wavelength Interval of 3 nm < λ < 30 nm,” Preprint FIAN im. P.N. Lebedeva, No. 14. (FIAN, Moscow, 2000).Google Scholar
  32. 32.
    S. S. Andreev, M. M. Barysheva, Yu. A. Vainer, P. K. Gaikovich, D. E. Pariev, A. E. Pestov, N. N. Sala-shchenko, and N. I. Chkhalo, Crystallography Rep. 58, 505 (2013).CrossRefGoogle Scholar
  33. 33.
    V. N. Polkovnikov, N. N. Salashchenko, S. D. Starikov, and N. I. Chkhalo, Bull. Russian Acad. Sci.: Phys. 78, 61 (2014).CrossRefGoogle Scholar
  34. 34.
    A. V. Deryabkin, E. N. Kulikov, and A. K. Smirnova, Elektron i Mikro-Elektron. SVCh 1, 493 (2017).Google Scholar
  35. 35.
    T. V. Kononenko, V. G. Ralchenko, E. E. Ashkinazi, et al., Appl. Phys. A: Mater. Sci. Process. 122 (3), 152 (2016).CrossRefGoogle Scholar
  36. 36.
    V. Aristov, M. Grigoriev, S. Kuznetsov, et al., Appl. Phys. Lett. 77 (24), 4058 (2000).CrossRefGoogle Scholar
  37. 37.
    C. Pellegrini, A. Marinelli, and S. Reiche, Rev. Mod. Phys. 88, 015006 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Astrofizika National Center of Laser Systems and ComplexesMoscowRussia
  2. 2.Tver State UniversityTverRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations