Advertisement

On the Potential Application of Direct Digital Synthesis in the Development of Frequency Synthesizers for Quantum Frequency Standards

  • A. A. Petrov
  • V. V. DavydovEmail author
  • N. M. Grebennikova
THEORY AND METHODS OF SIGNAL PROCESSING

Abstract

A new method for generation of the output signal of a frequency synthesizer of quantum frequency standards is considered. It is demonstrated that this method provides an opportunity to enhance spectral characteristics of the output signal, expand the range of output frequencies, and reduce the tuning step of the output frequency. A considerable (more than 10%) improvement in the frequency stability of a cesium-133 quantum standard and a 2.4-fold improvement in its temperature coefficient of frequency are reported.

Notes

REFERENCES

  1. 1.
    V. I. Dudkin and L. N. Pakhomov, Quantum Electronics (Politekh. Instit., St. Petersburg, 2012) [in Russian].Google Scholar
  2. 2.
    F. Riehle, Frequency Standards: Basics and Applications (Wiley-VCH, Weinheim, 2006; Fizmatlit, Moscow, 2009).Google Scholar
  3. 3.
    A. A. Petrov, V. V. Davydov, N. S. Myazin, and V. E. Kaganovskiy, Lecture Notes in Computer Science (LNCS), Subseries: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 10531, 561 (2017).Google Scholar
  4. 4.
    A. A. Petrov and V. V. Davydov, Lecture Notes in Computer Science (LNCS), Subseries: Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics 9247, 739 (2015).Google Scholar
  5. 5.
    V. N. Baryshev, D. S. Kupalov, A. V. Novoselov, et al., Izmerit. Tekh., No. 12, 33 (2016).Google Scholar
  6. 6.
    C. Audoin and B. Guinot, The Measurement of Time: Time, Frequency, and the Atomic Clock (Cambrige Univ., Cambrige, 2001; Tekhnosfera, Moscow, 2002).Google Scholar
  7. 7.
    V. V. Semenov, N. F. Nikiforov, S. V. Ermak, and V. V. Davydov, Radiotech. Elektron. 35, 2179 (1990).Google Scholar
  8. 8.
    A. G. Pavelyev, S. S. Matyugov, and O. I. Yakovlev, J. Commun. Technol. Electron. 53, 1021 (2008).CrossRefGoogle Scholar
  9. 9.
    A. A. Pakhomov, J. Commun. Technol. Electron. 52, 1114 (2007).CrossRefGoogle Scholar
  10. 10.
    S. F. Gorgadze and V. V. Boikov, J. Commun. Technol. Electron. 59, 245 (2014).CrossRefGoogle Scholar
  11. 11.
    A. A. Petrov and V. V. Davydov, J. Commun. Technol. Electron. 62, 289 (2017).CrossRefGoogle Scholar
  12. 12.
    T. S. Karaulanov, M. T. Graf, D. P. English, et al., Phys. Rev. A 79, 012902 (2009).CrossRefGoogle Scholar
  13. 13.
    S. V. Sokolov, V. V. Kamenskii, S. M. Kovalev, and E. N. Tishchenko, Izmerit. Tekh., No. 1, 19 (2017).Google Scholar
  14. 14.
    A. A. Petrov and V. V. Davydov, J. Phys.: Conf. Ser. 769, 012065 (2016).Google Scholar
  15. 15.
    A. A. Petrov, V. A. Vologdin, V. V. Davydov, and D. V. Zalyotov, J. Phys.: Conf. Ser. 643, 012087 (2015).Google Scholar
  16. 16.
    L. I. Ridiko, Komponenty i Tekh., No. 7, 76 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Petrov
    • 1
    • 2
  • V. V. Davydov
    • 2
  • N. M. Grebennikova
    • 2
  1. 1.Russian Institute of Radio Navigation and TimeSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations