Skip to main content
Log in

Spectrum of the Ferromagnetic Resonance of a Lattice of Orthogonal Permalloy Microwaveguides

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The ferromagnetic resonance spectrum at a frequency of ~9.85 GHz for an in-plane magnetized 2D square lattice with the unit cell parameter а ≈ 15 μm consisting of orthogonal microwaveguides with a width of w ≈ 5 μm on the basis of a permalloy film with thickness of d ≈ 90 nm has been experimentally and numerically investigated. It is shown that upon variation in the angle θ between the magnetic field direction and the unit cell axis, the total spectrum of spin-wave excitations of the lattice can be presented as a superposition of the spectra of separate permalloy microstrips magnetized at angles θ and π/2–θ and regions corresponding to the lattice nodes. It has been found that, in the case of magnetization along the lattice diagonal (θ ≈ 45о), excitations localized at the lattice nodes dominate in the spectrum, whereas, at θ ≈ 0 and 90°, the main contribution is made by excitations localized mainly on the microwaveguide segments between the lattice nodes; at θ ≈ 10°–13° and 18–20°, “repulsion” of absorption lines in the spectrum is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, et al., Phys. Usp. 58, 1002–1028 (2015).

    Article  Google Scholar 

  2. S. Neusser and D. Grundler, Adv. Mater. 21, 2927 (2009).

    Article  Google Scholar 

  3. M. Krawczyk and D. Grundler, J. Phys. Condens. Matter 26, 123202 (2014).

    Article  Google Scholar 

  4. A. Khitun and K. L. Wang, J. Appl. Phys. 110, 034306 (2015).

    Article  Google Scholar 

  5. A. G. Khitun and A. E. Kozhanov, Izv. Sarat. Univ., Novaya Seriya, Ser. Fiz. (2017).

    Google Scholar 

  6. A. Khitun, J. Appl. Phys. 113, 164503 (2013).

    Article  Google Scholar 

  7. F. Gertz, A. V. Kozhevnikov, Y. A. Filimonov, et al., IEEE J. Exploratory Solid-State Comput. Devices and Circuits 1, 67 (2015).

    Article  Google Scholar 

  8. M. Balynsky, D. Gutierrez, H. Chiang, et al., Sci. Rep. 7, 11539 (2017).

    Article  Google Scholar 

  9. K. Nanayakkara, A. Anferov, A. P. Jacob, et al., IEEE Trans. Magn. 50, 3402204 (2014).

    Article  Google Scholar 

  10. H. Yu, O. Kelly, V. Cros, et al., Sci. Rep. 4, 6848 (2014).

    Article  Google Scholar 

  11. Y. V. Khivintsev, Y. A. Filimonov, and S. A. Nikitov, Appl. Phys. Lett. 106, 052407 (2015).

    Article  Google Scholar 

  12. J. Jorzick, S. O. Demokritov, B. Hillebrands, et al., Phys. Rev. Lett. 88, 047204 (2002).

    Article  Google Scholar 

  13. S. Neusser, G. Duerr, S. Tacchi, et al., Phys. Rev. B 84, 094454 (2011).

    Article  Google Scholar 

  14. T. W. O’Keeffe and R. W. Patterson, J. Appl. Phys. 49, 4886 (1978).

    Article  Google Scholar 

  15. V. E. Demidov, J. Jersch, S. O. Demokritov, et al., Phys. Rev. B 79, 054417 (2009).

    Article  Google Scholar 

  16. S. McPhail, C. M. Gurtler, J. M. Shilton, et al., Phys. Rev. B 72, 094414 (2005).

    Article  Google Scholar 

  17. M. Yu, L. Malkinski, L. Spinu, et al., JAP 101, 09F501 (2007).

    Google Scholar 

  18. S. Neusser, B. Botters, and D. Grundler, Phys. Rev. B 78, 054406 (2008).

    Article  Google Scholar 

  19. J. Sklenar, V. S. Bhat, L. E. Delong, et al., Appl. Phys. Lett. 102, 152412 (2013).

    Article  Google Scholar 

  20. D. Kumar, J. W. Klos, M. Krawczyk, and A. Barman, JAP 115, 043917 (2014).

    Google Scholar 

  21. Y. V. Khivintsev, Y. A. Filimonov, and S. A. Nikitov, Appl. Phys. Lett. 106, 052407 (2015).

    Article  Google Scholar 

  22. S. Maendl, I. Stasinopoulos, and D. Grundler, Appl. Phys. Lett. 111, 012403 (2017).

    Article  Google Scholar 

  23. S. L. Vysotskii, A. S. Dzhumaliev, G. T. Kazakov, S. A. Nikitov, and Yu. A. Filimonov, J. Commun. Technol. Electron. 47, 693 (2002).

    Google Scholar 

  24. M. Donahue and D. Porter, Interagency Rep. NISTIR No. 6376 (NIST, Gaithersburg, 1999).

    Google Scholar 

  25. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, 1996).

    Google Scholar 

  26. M. Balynsky, A. Kozhevnikov, Y. Khivintsev, et al., J. Appl. Phys. 121, 024504 (2017).

    Article  Google Scholar 

  27. S. L. Vysotskii, S. A. Nikitov, Yu. A. Filimonov, and Yu. V. Khivintsev, JETP Lett. 88, 461 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Vysotskii.

Additional information

Original Russian Text © S.L. Vysotskii, G.M. Dudko, A.S. Dzhumaliev, A.V. Kozhevnikov, Yu.V. Nikulin, V.K. Sakharov, Yu.V. Khivintsev, Yu.A. Filimonov, A.G. Khitun, S.A. Nikitov, 2018, published in Radiotekhnika i Elektronika, 2018, Vol. 63, No. 9, pp. 986–991.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, S.L., Dudko, G.M., Dzhumaliev, A.S. et al. Spectrum of the Ferromagnetic Resonance of a Lattice of Orthogonal Permalloy Microwaveguides. J. Commun. Technol. Electron. 63, 1047–1052 (2018). https://doi.org/10.1134/S1064226918090255

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918090255

Navigation