Advertisement

Estimation of the Phonetic Speech Quality Using the Information Theoretic Approach

  • V. V. Savchenko
Theory and Methods of Signal Processing
  • 17 Downloads

Abstract

The problem of estimation of the speech phonetic quality using a short fragment of the voice signal is formulated. The Kullback–Leibler minimum information discrimination principle is used to propose a novel criterion and develop an algorithm. The dynamic properties of the algorithm are analyzed. The algorithm is employed in the analysis of the functional state of speaker using the voice signal. It is demonstrated that the needed duration of the voice signal is several minutes only.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Schuster, in Proc. 11th Pacific Rim Int. Conf. on Trends in Artificial Intelligence, 2010, LNCS (Springer-Verlag), Vol. 6230, p. 8.Google Scholar
  2. 2.
    A. V. Kocherov, Elektrosvyaz’, No. 4, 22 (2012).Google Scholar
  3. 3.
    GOST R 50840 - 95. Speech Transmission in Communication Channels. Methods for Assessment of Quality, Legibility and Recognizability (Izd-vo Standartov, Moscow, 1996).Google Scholar
  4. 4.
    V. Ya. Chuchupal and A. A. Korenchikov, Mashin. Obuchenie i Analiz Dan. 1, 1168 (2014).Google Scholar
  5. 5.
    P. A. Skrelin and V. V. Evdokimova, in Proc. 2nd Interdisciplinary Seminar “Analysis of Russian Colloquial Speech”, St-Petersburg, Aug. 27-28, 2008 (Inst. Inform. i Avtomatiz. RAN, St-Petersburg, 2008), p. 42.Google Scholar
  6. 6.
    V. G. Mikhailov, Acoust. Phys. 52, 200 (2006).CrossRefGoogle Scholar
  7. 7.
    V. V. Savchenko, Izv. Vyssh. Uchebn. Zaved. Radioelektron., No. 6, 3 (2007).Google Scholar
  8. 8.
    V. V. Savchenko and A. V. Savchenko, J. Commun. Technol. Electron. 61, 430 (2016).CrossRefGoogle Scholar
  9. 9.
    V. V. Savchenko and D. Yu. Akat’ev, Nauka i Obrazov. Electron. Resurs Bauman MGTU, No. 2 (2013). http://dx.doi.org/10.7463/0213.0527867/.Google Scholar
  10. 10.
    A. V. Gerasimov, O. A. Morozov, and V. R. Fidel’man, J. Commun. Technol. Electron. 50, 1192 (2005).Google Scholar
  11. 11.
    V. V. Savchenko, J. Commun. Technol. Electron. 61, 1374 (2016).CrossRefGoogle Scholar
  12. 12.
    Yu. Sandoval-Ibarra, V. Diaz-Ramirez, V. I. Kober, and V. N. Karnaukhov, Inform. Protsessy 15, 314 (2015).Google Scholar
  13. 13.
    V. V. Savchenko, Radiophys. Quantum Electron. 58, 373 (2015).CrossRefGoogle Scholar
  14. 14.
    V. V. Savchenko and P. G. Lukin, J. Commun. Technol. Electron. 61, 192 (2006).CrossRefGoogle Scholar
  15. 15.
    I. V. Shabel’nikov, Vestn. MGOU, Ser. Psikholog. Nauki, No. 4, 209 (2007).Google Scholar
  16. 16.
    D. Yu. Akat’ev and V. V. Savchenko, Avtometriya, No. 2, 68 (2005).Google Scholar
  17. 17.
    S. Kullback, Information Theory and Statistics (Dover, New York, 1997).zbMATHGoogle Scholar
  18. 18.
    V. V. Savchenko, J. Commun. Technol. Electron. 50, 286 (2005).Google Scholar
  19. 19.
    S. L. Marple, Digital Spectral Analysis (Prentice Hall, Englewood Cliffs, 1987).Google Scholar
  20. 20.
    V. V. Savchenko, Avtometriya, No. 2, 77 (1996).Google Scholar
  21. 21.
    V. V. Savchenko, J. Commun. Technol. Electron. 42, 393 (1997).Google Scholar
  22. 22.
    P. Müller, P. Neumann und R. Storm, Tafeln der Mathematischen Statistik (Fachbuchverlag, Leipzig, 1973; Finansy i Statistika, Moscow, 1982).zbMATHGoogle Scholar
  23. 23.
    B. Schuller, Computer Analisis of Human Behavior, Ed. by A. A. Salah and T. Gevers (Springer, Heidelberg, 2011).Google Scholar
  24. 24.
    V. V. Savchenko and R. A. Vasil’ev, Nauch. Vedom. Belgorod. Gos. Univ. Ser. Inform., Priklad. Mat. Uprav. 32, No. 21-1, p. 186 (2014).Google Scholar
  25. 25.
    V. V. Savchenko, Radiophys. Quantum Electron. 34, 225 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Nizhny Novgorod State Linguistic UniversityNizhny NovgorodRussia

Personalised recommendations