Advertisement

Journal of Communications Technology and Electronics

, Volume 62, Issue 9, pp 1018–1026 | Cite as

Structure and thermomechanical properties of fast-quenched Ti2NiCu alloy ribbons with various crystalline phase fractions obtained by means of annealing by electric current

  • A. N. Akbasheva
  • A. V. Irzhak
  • V. V. Istomin-Kastrovskii
  • V. V. Koledov
  • D. S. KuchinEmail author
  • P. V. Lega
  • N. Yu. Tabachkova
  • V. G. Shavrov
  • A. V. Shelyakov
Novel Radio Systems and Elements
  • 45 Downloads

Abstract

New promising functional materials—amorphous-crystalline fast-quenched Ti2NiCu alloys exhibiting the shape memory effect (SME)—are studied. A method for annealing amorphous alloys by electric current pulses is proposed. This method allows one to obtain the needed degree of crystallinity. It is demonstrated that a microcrystalline structure with spherical grains exists in amorphous-crystalline samples. These grains increase in size from 150 nm to 3.2 μm as the degree of annealing increases. The SME is not observed in nontreated samples and is clearly manifested in completely annealed samples. A two-way SME and a trend toward lowering of the martensitic transition temperature are observed in partially annealed samples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Gunther, V. N. Hodorenko, T. L. Chekalkin, et al., Medical Materials and Implants with Shape Memory (Publishing House of the MIC, Tomsk, 2011).Google Scholar
  2. 2.
    R. X. Wang, Y. Zohar, and M. Wong, J. Micromech. Microeng. 12, 323 (2002).CrossRefGoogle Scholar
  3. 3.
    Y. Q. Fu, J. K. Luo, A. J. Flewitt, et al., Smart Mater. Struct. 16, 2651 (2007).CrossRefGoogle Scholar
  4. 4.
    A. V. Irzhak, V. V. Koledov, D. I. Zakharov, et al., J. Alloys Compd. 586 (Suppl. 1), 464 (2014).CrossRefGoogle Scholar
  5. 5.
    D. Zakharov, G. Lebedev, A. Irzhak, et al., Smart Mater. Struct. 21, 052001 (2012).CrossRefGoogle Scholar
  6. 6.
    A. V. Shelyakov, N. N. Sitnikov, V. V. Koledov, et al., Int. J. Smart Nano Mater. 2 (2), 68 (2011).CrossRefGoogle Scholar
  7. 7.
    D. Zakharov, G. Lebedev, V. Koledov, et al., Phys. Procedia 10, 58 (2010).CrossRefGoogle Scholar
  8. 8.
    A. V. Irzhak, V. S. Kalashnikov, V. V. Koledov, et al., Tech. Phys. Lett. 36, 329 (2010).CrossRefGoogle Scholar
  9. 9.
    A. V. Irzhak, D. I. Zakharov, V. S. Kalashnikov, et al., J. Commun. Techn. Electron. 55, 818 (2010).CrossRefGoogle Scholar
  10. 10.
    A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, et al., JETP Lett. 67, 227 (1998).CrossRefGoogle Scholar
  11. 11.
    V. Buchelnikov, I. Dikshtein, R. Grechishkin, et al., J. Magn. Magn. Mater. (Special issue) 272–276, 2025 (2004).CrossRefGoogle Scholar
  12. 12.
    I. Dikshtein, V. Koledov, V. Shavrov, et al., IEEE Trans. Magn. 35, 3811 (1999).CrossRefGoogle Scholar
  13. 13.
    N. I. Kourov, A. V. Korolev, V. G. Pushin, et al., Phys. Met. Metallogr. 99 (4), 376 (2005).Google Scholar
  14. 14.
    V. G. Pushin, N. I. Kourov, A. V. Korolev, et al., Phys. Met. Metallogr. 99 (4), 401 (2005).Google Scholar
  15. 15.
    D. A. Filippov, V. V. Khovailo, V. V. Koledov, et al., J. Magn. Magn. Mater. 258, 507 (2003).CrossRefGoogle Scholar
  16. 16.
    A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, et al., Phys. Rev. B 59, 1113 (1999).CrossRefGoogle Scholar
  17. 17.
    A. I. Gusev, Usp. Fiz. Nauk 168, 55 (1998).CrossRefGoogle Scholar
  18. 18.
    C. C. Wang, Y. W. Mao, Z. W. Shan, et al., Proc. Natl. Acad. Sci. USA 110 (49), 19725 (2013).CrossRefGoogle Scholar
  19. 19.
    T. Kulik, J. Non-Cryst. Solids 287 (1), 145 (2001).MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Pauly, Acta Mater. 57, 5445 (2009).CrossRefGoogle Scholar
  21. 21.
    R. Valiev, Nature Mater. 3, 511 (2004).CrossRefGoogle Scholar
  22. 22.
    Y. H. Zhao, X. Z. Liao, Z. Jin, et al., Acta Mater. 52, 4589 (2004).CrossRefGoogle Scholar
  23. 23.
    V. V. Stolyarov, Y. T. Zhu, and I. V. Alexandrov, Mater. Sci. Eng. A 343 (1), 43 (2003).CrossRefGoogle Scholar
  24. 24.
    A. M. Glezer, Vestn. Tambov. Gos. Univ. 15, 1169 (2010).Google Scholar
  25. 25.
    U. Köster, Ann. N. Y. Acad. Sci. 484, 39 (1986).CrossRefGoogle Scholar
  26. 26.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  27. 27.
    S. P. Belyaev, N. N. Resnina, A. V. Irzhak, et al., J. Alloys Compd. 586, 222 (2014).CrossRefGoogle Scholar
  28. 28.
    S. P. Belyaev, V. V. Istomin-Kastrovskiy, V. V. Koledov, et al., Phys. Procedia, 39 (2010).Google Scholar
  29. 29.
    N. M. Matveeva, V. G. Pushin, A. V. Shelyakov, et al., Fiz. Met. Metalloved. 83 (6), 82 (1997).Google Scholar
  30. 30.
    A. V. Shelyakov, N. N. Sitnikov, A. P. Menushenkov, et al., Thin Solid Films 519 (15), 5314 (2011).CrossRefGoogle Scholar
  31. 31.
    N. Resnina, S. Belyaev, V. Slesarenko, et al., Mater. Sci. Eng. A 627, 65 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. N. Akbasheva
    • 1
  • A. V. Irzhak
    • 1
    • 2
  • V. V. Istomin-Kastrovskii
    • 1
  • V. V. Koledov
    • 3
  • D. S. Kuchin
    • 3
    Email author
  • P. V. Lega
    • 3
  • N. Yu. Tabachkova
    • 1
  • V. G. Shavrov
    • 3
  • A. V. Shelyakov
    • 4
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  4. 4.National Research Nuclear University MEPhIMoscow Engineering Physics InstituteMoscowRussia

Personalised recommendations