Advertisement

Rapidly quenched ferromagnetic ribbons with shape memory for magnetically controlled micromechanic devices

  • E. T. Dilmieva
  • A. V. Irzhak
  • A. P. Kamantsev
  • V. V. Koledov
  • V. G. Shavrov
  • R. M. Grechishkin
  • E. P. Krasnoperov
  • V. A. Dikan
  • F. Albertini
  • S. Fabbrici
  • L. González-Legarreta
  • B. Hernando
Nanoelectronics

Abstract

One-way shape-memory effect (SME) controlled by temperature and magnetic field in rapidly melt-quenched (RMQ) Heusler-alloy (Ni53Mn24Ga23) ribbons is experimentally studied. Two-way SME that results from training is demonstrated for submicron Ni53Mn24Ga23 samples. Reversible thermally and magnetically controlled bending of no less than 1.5% and deflection of no less than 2 μm are reached for composite Ni53Mn24Ga23/Pt microactuators with sizes of 25 × 2.3 × 1.7 μm3 in the presence of magnetic field of μ0 Н = 8 T at an initial temperature of 63°С.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. D. Buchel’nikov, A. N. Vasil’ev, V. V. Koledov, et al., Physics-Uspekhi 49, 871 (2006).CrossRefGoogle Scholar
  2. 2.
    A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, et al., JETP Lett. 67, 227 (1998).CrossRefGoogle Scholar
  3. 3.
    A. D. Bozhko, A. N. Vasil’ev, V. V. Khovailo, et al., J. Exp. Theor. Phys. 88, 954 (1999).CrossRefGoogle Scholar
  4. 4.
    I. Dikshtein, V. Koledov, V. Shavrov, et al., IEEE Trans. Magn. 35, 3811 (1999).CrossRefGoogle Scholar
  5. 5.
    A. Vasiliev, A. Bozhko, V. Khovailo, et al., Phys. Rev. B 59, 1113 (1999).CrossRefGoogle Scholar
  6. 6.
    V. Buchelnikov, I. Dikshtein, R. Grechishkin, et al., J. Magn. Magn. Mater. 272-276, 2025 (2004).CrossRefGoogle Scholar
  7. 7.
    V. V. Kokorin, V. V. Koledov, V. G. Shavrov, et al., J. Appl. Phys. 116, 103515 (2014).CrossRefGoogle Scholar
  8. 8.
    S. Pramanick, S. Chatterjee, S. Giri, et al., J. Alloys Comp. 578, 157 (2013).CrossRefGoogle Scholar
  9. 9.
    L. Gonzalez-Legarreta, T. Sanchez, W. O. Rosa, et al., J. Supercond. Novel Magn. 25, 2431 (2012).CrossRefGoogle Scholar
  10. 10.
    T. Sánchez, R. S. Turtelli, R. Grössinger, et al., J. Magn. Magn. Mater. 324, 3535 (2012).CrossRefGoogle Scholar
  11. 11.
    L. González, J. García, M. Nazmunnahar, et al., Solid State Phenom. 190, 307 (2012).CrossRefGoogle Scholar
  12. 12.
    D. C. Dunand and P. Müllner., Adv. Mater. 23, 216 (2011).CrossRefGoogle Scholar
  13. 13.
    K. Akatyeva, V. Afonina, F. Albertini, et al., Solid State Phenom. 190, 295 (2012).CrossRefGoogle Scholar
  14. 14.
    A. V. Irzhak, V. S. Kalashnikov, V. V. Koledov, D. S.Kuchin, G. A. Lebedev, P. V. Lega, N. A. Pikhtin, I. S. Tarasov, V. G. Shavrov, and A. V. Shelyakov., Tech. Phys. Lett. 36, 329 (2010).CrossRefGoogle Scholar
  15. 15.
    N. I. Kourov, A. V. Korolev, V. G. Pushin, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo., Phys. Met. Metallogr. 99, 376 (2005).Google Scholar
  16. 16.
    V. G. Pushin, N. I. Kourov, A. V. Korolev, V.A.Kazantsev, L. I. Yurchenko, V. V. Koledov, V. G. Shavrov, and V. V. Khovailo., Phys. Met. Metallogr. 99, 401 (2005).Google Scholar
  17. 17.
    R. M. Grechishkin, V. V. Koledov, V. G. Shavrov, et al., Int. J. Appl. Electromagn. Mech. 19, 175 (2004).Google Scholar
  18. 18.
    O. M. Korpusov, R. M. Grechishkin, V. V. Koledov, et al., J. Magn. Magn. Mater. 272-276, 2035 (2004).CrossRefGoogle Scholar
  19. 19.
    A. A. Cherechukin, I. E. Dikshtein, D. I. Ermakov, et al., Phys. Lett. A 291, 175 (2001).CrossRefGoogle Scholar
  20. 20.
    V. A. Chernenko, V. V. Kokorin, and I. N. Vitenko., Smart Mater. Structures 3, 80 (1994).CrossRefGoogle Scholar
  21. 21.
    D. Zakharov, G. Lebedev, V. Koledov, et al., Phys. Procedia 10, 58 (2010).CrossRefGoogle Scholar
  22. 22.
    A. V. Irzhak, D. I. Zakharov, V. S. Kalashnikov, V.V.Koledov, D. S. Kuchin, G. A. Lebedev, P. V. Lega, E. P. Perov, N. A. Pikhtin, V. G. Pushin, I. S. Tarasov, V. V. Khovailo, V. G. Shavrov, and A. V. Shelyakov, J. Commun. Technol. Electron. 55, 818 (2010).CrossRefGoogle Scholar
  23. 23.
    E. Kalimullina, A. Kamantsev, V. Koledov, et al., Phys. Status Solidi C 11, 1023 (2014).CrossRefGoogle Scholar
  24. 24.
    A. Irzhak, V. Koledov, D. Zakharov, et al., J. Alloys Comp. 586, S464 (2014).CrossRefGoogle Scholar
  25. 25.
    M. Kohl, M. Schmitt, A. Backen, et al., Appl. Phys. Lett. 104, 043111 (2014).CrossRefGoogle Scholar
  26. 26.
    V. Bessalova, N. Perov, and V. Rodionova, J. Magn. Magn. Mater. 415, 66 (2016).CrossRefGoogle Scholar
  27. 27.
    F. S. Liu, Q. B. Wang, S. P. Li, et al., Physica B 412, 74 (2013).CrossRefGoogle Scholar
  28. 28.
    Z. Liu, S. Yu, H. Yang, et al., Intermetallics 16, 447 (2008).CrossRefGoogle Scholar
  29. 29.
    H. Feng-Xia, S. Bao-Gen, and S. Ji-Rong., Chin. Phys. B 22, 037505 (2013).CrossRefGoogle Scholar
  30. 30.
    J. L. Sánchez Llamazares, T. Sánchez, J. D. Santos, et al., Appl. Phys. Lett. 92, 012513 (2008).CrossRefGoogle Scholar
  31. 31.
    W. O. Rosa, L. González, J. García, et al., Phys. Res. Int. 2012, 794171 (2012).CrossRefGoogle Scholar
  32. 32.
    D. A. Filippov, V. V. Khovailo, V. V. Koledov, et al., J. Magn. Magn. Mater. (Special Issue) 258, 507 (2003).CrossRefGoogle Scholar
  33. 33.
    V. N. Prudnikov, A. P. Kazakov, I. S. Titov., Ya. N. Kovarskii, N. S. Perov, A. B. Granovsky, I. Dubenko, A. K. Pathak, N. Ali, and J. Gonzalez, Phys. Solid State 53, 490 (2011).CrossRefGoogle Scholar
  34. 34.
    L. González-Legarreta, W. O. Rosa, J. García, et al., J. Alloys Comp. 582, 490 (2014).CrossRefGoogle Scholar
  35. 35.
    T. Sánchez, J. L. Sánchez Llamazares, B. Hernando, et al., Mater. Sci. Forum 635, 81 (2010).CrossRefGoogle Scholar
  36. 36.
    F. Chen, M. Zhang, Y. Chai, et al., Phys. Status Solidi A 209, 1557 (2012).CrossRefGoogle Scholar
  37. 37.
    R. Sahoo, D. M. Raj Kumar, D. Babu Arvindha, et al., J. Magn. Magn. Mater. 347, 95 (2013).CrossRefGoogle Scholar
  38. 38.
    J. Liu, N. Scheerbaum, J. Lyubina, et al., Appl. Phys. Lett. 93, 102512 (2008).CrossRefGoogle Scholar
  39. 39.
    J. Liu, N. Scheerbaum, S. Weiß et al., Appl. Phys. Lett. 95, 152503 (2009).CrossRefGoogle Scholar
  40. 40.
    J. Liu, N. Scheerbaum, D. Hinz, et al., Appl. Phys. Lett. 92, 162509 (2008).CrossRefGoogle Scholar
  41. 41.
    F. Albertini, S. Besseghini, A. S. Bugaev, R. M. Grechishkin, V. V. Koledov, L. Pareti, M. Pasquale, V. G. Shavrov, and D. S. Yulenkov, J. Commun. Technol. Electron. 50, 638 (2005).Google Scholar
  42. 42.
    N. M. Matveeva, Yu. K. Kovneristyi, L. A. Matlakhova, et al., Izv. AN SSSR, Ser. Metally, No. 4, 97 (1987).Google Scholar
  43. 43.
    F. Albertini, S. Besseghini, A. Paoluzi, et al., J. Magn. Magn. Mater. 242, 1421 (2002).CrossRefGoogle Scholar
  44. 44.
    P. A. Algarabel, C. Magen, L. Morellon, et al., J. Magn. Magn. Mater. 272–276, 2047 (2004).CrossRefGoogle Scholar
  45. 45.
    N. Yao and Ch. L. Van, The Reference Book on Microscopy for Nanotechnology (Nauch. Mir, Moscow, 2011) [in Russian].Google Scholar
  46. 46.
    A. Irzhak, V. Koledov, D. Zakharov, et al., J. Alloys Comp. 586, S464 (2014).CrossRefGoogle Scholar
  47. 47.
    D. Zakharov, G. Lebedev, A. Irzhak, et al., Smart Mater. Struct. 21, 052001 (2012).CrossRefGoogle Scholar
  48. 48.
    V. I. Nizhankovskii and V. I. Tsebro., Usp. Fiz. Nauk. 183 (32), 219 (2013).CrossRefGoogle Scholar
  49. 49.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov., Progress Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
  50. 50.
    E. Pagounis, A. Laptev, J. Jungwirth, et al., Scr. Mater. 88, 17 (2014).CrossRefGoogle Scholar
  51. 51.
    S. Glock, L. P. Canal, C. M. Grize, et al., Composites Sci. Technol. 114, 110 (2015).CrossRefGoogle Scholar
  52. 52.
    Y. Liu, X. Zhang, D. Xing, et al., Physica Status Solidi A 212, 855 (2015).CrossRefGoogle Scholar
  53. 53.
    A. V. Shelyakov, N. N. Sitnikov, V. V. Koledov, et al., Int. J. Smart and Nano Mater. 2 (2), 68 (2011).CrossRefGoogle Scholar
  54. 54.
    B. T. Lester, T. Baxevanis, Y. Chemisky, et al., Acta Mechanica 226, 3907 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • E. T. Dilmieva
    • 1
    • 2
    • 3
  • A. V. Irzhak
    • 4
    • 5
  • A. P. Kamantsev
    • 1
    • 2
  • V. V. Koledov
    • 1
    • 2
  • V. G. Shavrov
    • 1
  • R. M. Grechishkin
    • 6
  • E. P. Krasnoperov
    • 7
  • V. A. Dikan
    • 1
    • 4
  • F. Albertini
    • 8
  • S. Fabbrici
    • 8
  • L. González-Legarreta
    • 9
  • B. Hernando
    • 9
  1. 1.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.International Laboratory of High Magnetic Fields and Low TemperaturesWroclawPoland
  3. 3.Bauman State Technical UniversityMoscowRussia
  4. 4.Moscow Institute of Steel and AlloysNational Research Technological UniversityMoscowRussia
  5. 5.Institute of Microelectronic Technology and Ultrahigh-Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  6. 6.Tver State UniversityTverRussia
  7. 7.Kurchatov InstituteNational Research CenterMoscowRussia
  8. 8.Institute of Materials for Electronics and MagnetismParmaItaly
  9. 9.Faculty of PhysicsUniversity of OviedoOviedoSpain

Personalised recommendations