Advertisement

Projective-invariant description of a meandering river

  • L. I. Rubanov
  • A. V. Seliverstov
Mathematical Models and Computational Methods
  • 41 Downloads

Abstract

How can the projective invariant of the cubic curve approximating the river bed near its meander be calculated? A well-known approach uses the Weierstrass normal form. However, it is important to find this form by means of calculations tolerant to curve representation errors and, in particular, using calculations that do not require computation of tangent lines or inflection points. A new algorithm is proposed for calculation of the projective invariant of the cubic curve. This algorithm can be used to describe river meanders.

Keywords

cubic curve Weierstrass normal form projective invariant image description image recognition machine vision algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Belim and P. E. Kutlunin, “Boundary extraction in images using a clustering algorithm,” Comp. Opt. 39, 119–124 (2015). doi 10.18287/0134-2452-2015-39-1- 119-124Google Scholar
  2. 2.
    P. A. Chochia, “Transition from 2D to 3D images: modification of the two-scale model and algorithms of processing,” J. Commun. Technol. Electron. 60, 678–687 (2015). doi 10.1134/S1064226915060054CrossRefGoogle Scholar
  3. 3.
    J. M. Burdis, I. A. Kogan, and H. Hong, “Objectimage correspondence for algebraic curves under projections,” Symmetry, Integrability and Geometry: Methods and Appl. 9 (023), 3842 (2013). doi 10.3842/SIGMA.2013.023Google Scholar
  4. 4.
    A. P. Kotov, V. A. Fursov, and E. V. Goshin, “Technology for fast 3D-scene reconstruction from stereo images,” Comp. Opt. 39, 600–605 (2015). doi 10.18287/0134-2452-2015-39-4-600-605CrossRefGoogle Scholar
  5. 5.
    E. V. Goshin and V. A. Fursov, “3D scene reconstruction from stereo images with unknown extrinsic parameters,” Comp. Opt. 39, 770–775 (2015). doi 10.18287/0134-2452-2015-39-5-770-775CrossRefGoogle Scholar
  6. 6.
    D. Mishkin, J. Matas, and M. Perdoch, “MODS: Fast and robust method for two-view matching,” Comput. Vis. Image Underst. 141, 81–93 (2015). doi 10.1016/j.cviu.2015.08.005CrossRefGoogle Scholar
  7. 7.
    E. I. Ershov, V. N. Karnaukhov, and M. G. Mozerov, “Stereovision algorithms applicability investigation for motion parallax of monocular camera case,” J. Commun. Technol. Electron. 61, 695–704 (2016). doi 10.1134/S1064226916060073CrossRefGoogle Scholar
  8. 8.
    S. Lee and Y. Liu, “Curved Glide-Reflection Symmetry Detection,” IEEE Trans. Pattern. Anal. Mach. Intell. 34, 266–278 (2012). doi 10.1109/TPAMI.2011.118CrossRefGoogle Scholar
  9. 9.
    J. Diaz-Escobar, V. I. Kober, and V. N. Karnaukhov, “Restoration of multispectral images distorted by spatially nonuniform camera motion,” J. Commun. Technol. Electron. 60, 1360–1365 (2015). doi 10.1134/S1064226915120050CrossRefGoogle Scholar
  10. 10.
    M. Sela, Y. Aflalo, and R. Kimmel, “Computational caricaturization of surfaces,” Comput. Vis. Image Underst. 141, 1–17 (2015). doi 10.1016/j.cviu.2015.05.013CrossRefGoogle Scholar
  11. 11.
    P. P. Nikolayev, “Recognition of projectively transformed flat figures. VIII. On calculation of the ensemble of correspondence of ovals with rotational symmetry,” Sensory Syst. 29 (1), 28–55 (2015).Google Scholar
  12. 12.
    N. Pritula, D. P. Nikolaev, A. Sheshkus, M. Pritula, and P. P. Nikolaev, “Comparison of two algorithms modifications of projective-invariant recognition of the plane boundaries with the one concavity,” in Proc. 7th Int. Conf. on Machine Vision (ICMV 2014), Milan, Italy, Nov. 19–21, 2014, Eds. A. Verikas, B. Vuksanovic, P. Radeva, J. Zhou; Proc. SPIE,9445, 944508 (2015). doi 10.1117/12.2181215CrossRefGoogle Scholar
  13. 13.
    R. A. Gershgorin, L. I. Rubanov, and A. V. Seliverstov, “Easily computable invariants for hypersurface recognition,” J. Commun. Technol. Electron. 60, 1429–1431 (2015). doi 10.1134/S1064226915120074CrossRefGoogle Scholar
  14. 14.
    M. Bardet, J.-C. Faugère, and B. Salvy, “On the complexity of the F5 Gröbner basis algorithm,” J. Symbol. Comput. 70, 49–70 (2015). doi 10.1016/j.jsc.2014.09.025CrossRefzbMATHGoogle Scholar
  15. 15.
    L. A. Bokut and Yuqun Chen, “Gröbner–Shirshov bases and their calculation,” Bull. Math. Sci. 4, 325–395 (2014). doi 10.1007/s13373-014-0054-6MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    V. R. Kulikov and V. A. Stepanenko, “On solutions and Waring’s formulas for systems of n algebraic equations of n unknowns,” Algebra i Analiz 26, 200–214 (2014); St. Petersburg Math. J. 26, 839–848 (2015).: doi 10.1090/spmj/1361Google Scholar
  17. 17.
    V. V. Prasolov and Yu. P. Solovyev, Elliptic Functions and Elliptic Integrals (Am. Math. Soc., Providence, 1997; Faktorial, Moscow, 1997).zbMATHGoogle Scholar
  18. 18.
    A. V. Seliverstov, “Cubic forms without monomials in two variables,” Vestn. Udmurt. Univ.: Mat. Mekh., Komp. Nauki, 25 (1), 71–77 (2015).CrossRefzbMATHGoogle Scholar
  19. 19.
    V. V. Prasolov and V. M. Tikhomirov, Geometry (MTsNMO, Moscow, 1997; Am. Math. Soc. 2001).Google Scholar
  20. 20.
    V. Guletski and A. Tikhomirov, “Algebraic cycles on quadric sections of cubic in P4 under the action of symplectomorphisms,” Proc. Edinburgh Math. Soc. 59, 377–392 (2016). doi 10.1017/S0013091515000176MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. G. Vladut, G. A. Kabatiansky, and V. V. Lomakov, “On error correction with errors in both the channel and syndrome,” Probl. Inf. Transmis. 51, 132–138 (2015). doi 10.1134/S0032946015020040MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    L. I. Rubanov, “Parallelization of nonuniform loops in supercomputers with distributed memory,” J. Commun. Technol. Electron. 59, 639–646 (2014). doi 10.1134/S1064226914060175CrossRefGoogle Scholar
  23. 23.
    P. Yu. Yakimov, “Tracking traffic signs in video sequences based on a vehicle velocity,” Comp. Opt. 39, 795–800 (2015). doi 10.18287/0134-2452-2015-39-5- 795-800CrossRefGoogle Scholar
  24. 24.
    A. L. Kheifets, “Geometrical accuracy of computer algorithms for constructive problems,” in Problems of the quality of the graphic education of students in a technical college: traditions and innovations (2016). http://dgng.pstu.ru/conf2016/papers/74/.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations