Descriptor-based tracking algorithm using a depth camera

  • D. Miramontes-Jaramillo
  • V. I. Kober
  • V. H. Díaz-Ramírez
  • V. N. Karnaukhov
Mathematical Models and Computational Methods


The appearance of inexpensive high-quality video cameras and depth cameras resulted in the development of a large number of object-tracking algorithms. In this paper, a new descriptor-based algorithm for real-time object tracking using the information from a Microsoft Kinect depth camera is proposed. As a descriptor for the object tracked, histograms of oriented gradients calculated from the circular sliding regions of the scene image are used. The information on the depth of the scene is used when the image of the object of interest is partially occluded by other objects in the scene. To speed up the tracking process, a model for predicting the object motion is used. To ensure real-time tracking with the proposed algorithm, a multicore graphics processor is used.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Comput. Surv. 38, 45 (2006).CrossRefGoogle Scholar
  2. 2.
    H. Schweitzer, J. Bell, and F. Wu, “Very fast template matching,” in Proc. 7th Eur. Conf. on Comput. Vis. (ECCV 2002), Copenhagen, Denmark, May 28–31, 2002 (Springer-Verlag, 2002), pp. 358–372.Google Scholar
  3. 3.
    S. Nejhum, J. Ho, and M. Yang, “Online visual tracking with histograms and articulating blocks,” in Comput. Vis. Image Underst., 2010, pp. 901–914.Google Scholar
  4. 4.
    V. H. Díaz-Ramírez, K. Picos, and V. Kober, “Target tracking in nonuniform illumination conditions using locally adaptive correlation filters,” Opt. Commun. 323, 32–43 (2014).CrossRefGoogle Scholar
  5. 5.
    I. Haritaoglu, D. Harwood, and L. Davis, “W4: realtime surveillance of people and their activities,” IEEE Trans. Pattern. Anal. Mach. Intell. 22, 809–830 (2000).CrossRefGoogle Scholar
  6. 6.
    F. Talu, I. Turkoglu, and M. Cebeci, “A hybrid tracking method for scaled and oriented objects in crowded scenes,” Expert Syst. Appl. 38, 13682–13687 (2011).Google Scholar
  7. 7.
    A. Buchanan and A. Fitzgibbon, “Document image dewarping using robust estimation of curled text lines,” Combining local and global motion models for feature point tracking, in Comput. Vision Pat. Recogn., 2007, pp. 1–8.Google Scholar
  8. 8.
    I. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol. 151 182–195 (2005).CrossRefGoogle Scholar
  9. 9.
    Z. Kalal, K. Mikolajczyk, and J. Matas, “Trackinglearning- detection,” IEEE Trans. Pattern. Anal. Mach. Intell. 34, 1409–1422 (2012).CrossRefGoogle Scholar
  10. 10.
    B. Babenko, Y. C. Ming-Hsuan, and S. Belongie, “Visual tracking with online multiple instance learning,” in Proc. IEEE Conf. on Comput. Vision and Patt. Rec. (CVPR 2009), Miami, Florida, June 20–25, 2009, (IEEE, New York, 2009), pp. 983–990.Google Scholar
  11. 11.
    S. Song and J. Xiao, “Cluster based weighted SVM for the recognition of Farsi handwritten digits,” in Tracking Revisited Using Rgbd Camera: Unified Benchmark and Base-Lines, (2013), pp. 233–240.Google Scholar
  12. 12.
    K. Meshgi, S. Maeda, S. Oba, and S. Ishii, “Fusion of multiple cues from color and depth domains using occlusion aware bayesian tracker,” IEICE Tech. Rep. Neurocomp. 114 (500), 127–132 (2014).Google Scholar
  13. 13.
    N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Comput. Vis. Patt. Rec. 1, 886–893 (2005).Google Scholar
  14. 14.
    D. Miramontes-Jaramillo, V. Kober, and V. Díaz-Ramírez, “CWMA: Circular window matching algorithm,” in Proc. 18th Iberoam. Cong. in Patt. Rec., 2013, LNCS 8258, pp. 439–446 (2013).Google Scholar
  15. 15.
    D. Miramontes-Jaramillo, V. I. Kober, V. H. Díaz-Ramírez, and V. N. Karnaukhov, “A novel Image Matching Algorithm Based on Sliding Histograms of Oriented Gradients,” J. Commun. Technol. Electron. 59, 1446–1450 (2014).CrossRefGoogle Scholar
  16. 16.
    V. Gupta, Nonlinear Filters with Spatially Connected Neighborhoods (Laxmi Publications, 2005).Google Scholar
  17. 17.
    E. M. Ramos and V. Kober, “Design of correlation filters for recognition of linearly distorted objects in linearly degraded scenes,” J. OSA A 24, 3403–3417 (2007).Google Scholar
  18. 18.
    L. P. Yaroslavsky and M. Eden, Fundamentals of Digital Optics (Birkhäuse, Boston, 1996).CrossRefzbMATHGoogle Scholar
  19. 19.
    L. Po-Ming and C. Hung-Yi, “Adjustable gamma correction circuit for TFT LCD,” in Proc. IEEE Symp. on Circ. and Syst., 2005 (IEEE, New York, 2005), pp. 780–783.CrossRefGoogle Scholar
  20. 20.
    W. K. Pratt, Digital Image Processing (Wiley, 2007).CrossRefzbMATHGoogle Scholar
  21. 21.
    G. Takacs, V. Chandrasekhar, S. Tsai, R. Grzeszczuk, and B. Girod, “Distortion invariant pattern recognition with local correlations,” Fast Computation of Rotation- Invariant Image Features by Approximate Radial Gradient Transform, 22, No. 8, pp. 2970–2982 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • D. Miramontes-Jaramillo
    • 1
  • V. I. Kober
    • 1
    • 2
    • 4
  • V. H. Díaz-Ramírez
    • 3
  • V. N. Karnaukhov
    • 2
  1. 1.Department of Computer SciencesResearch and Higher Education (CICESE)EnsenadaMexico
  2. 2.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  3. 3.Instituto Politecnico Nacional—CITEDITijuanaMexico
  4. 4.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations