Skip to main content
Log in

Role of elastic dissipation in the formation of the resonant properties of magnetization precession in the magnetoelastic environment

  • Radio Phenomena in Solids and Plasma
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

A set of coupled magnetoelastic equations is used to examine the problem concerning the establishment of free magnetization oscillations under the condition that dissipation is lacking in the magnetic system. The critical relationship between elastic damping parameters and the magnetoelasticity constant, which corresponds to the minimum in the dependence of magnetic damping on elastic one, is found. The bellshaped peak, on both sides of which the influence of an elastic system on the magnetic one diminishes, is detected in the dependence between the effective magnetic oscillation damping parameter and the elastic oscillation damping parameter. The observed phenomena is suggested to interpret using the model of two (magnetic and elastic) oscillators coupled through magnetoelastic interaction. The given model makes it possible to reveal four regimes of steady-state oscillations: weak damping with beats, strong damping without beats, weak damping without beats, and supercritical exponential growth. The mechanical similarity of observed phenomena is discussed, and recommendations needed to organize experiments are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, Fl., 1996).

    Google Scholar 

  2. A. V. Vashkovskii, V. S. Stal’makhov, and Yu. P. Sharaevskii, Magnetostatic Waves in Microwave Electronics (Saratov. Univ., Saratov, 1993) [in Russian].

    Google Scholar 

  3. J. D. Adam, Proc. IEEE 76, 159 (1988).

    Article  Google Scholar 

  4. W. C. Ishak, Proc. IEEE 76, 171 (1988).

    Article  Google Scholar 

  5. J. Adam, L. Davis, G. Dionne, et al., IEEE Trans. Microwave Theory Tech. 50, 721 (2002).

    Article  Google Scholar 

  6. A. M. Clogston, H. Suhl, L. R. Walker, and P. W. Anderson, J. Phys. Chem. Solids 1 (3), 129 (1956).

    Article  Google Scholar 

  7. M. Sparks, Ferromagnetic Relaxation Theory (McGraw-Hill, New York, 1964).

    Google Scholar 

  8. R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999).

    Article  Google Scholar 

  9. V. L. Safonov and H. N. Bertram, Phys. Rev. B 63, 094419 (2001).

    Article  Google Scholar 

  10. E. Abrahams and C. Kittel, Phys. Rev. 88, 1200 (1952).

    Article  Google Scholar 

  11. H. Suhl, IEEE Trans. Magn. 34, 1834 (1998).

  12. E. D. McMichael and A. Kunz, J. Appl. Phys. 91, 8650 (2002).

    Article  Google Scholar 

  13. E. Rossi and O. G. Heinonen, A. H. MacDonald, Phys. Rev. B 72, 174412 (2005).

    Article  Google Scholar 

  14. A. Widom, C. Vittoria, and S. Yoon, J. Appl. Phys. 108, 073924 (2010).

    Article  Google Scholar 

  15. A. Widom, S. Sivasubramanian, C. Vittoria, et al., Phys. Rev. B 81, 212402 (2010).

    Article  Google Scholar 

  16. C. Vittoria, S. D. Yoon, and A. Widom, Phys. Rev. B 81, 014412 (2010).

    Article  Google Scholar 

  17. P. M. Vetoshko, “Magnitometer,” RF Patent 21000819 (30.09.1996).

  18. P. M. Vetoshko, M. V. Valeiko, and P. I. Nikitin, Sens. Actuators A 106 (1–3), 270 (2003).

    Article  Google Scholar 

  19. P. I. Nikitin, P. M. Vetoshko, and T. I. Ksenevich, J. Magn. Magn. Mater. 311, 445 (2007).

    Article  Google Scholar 

  20. P. Vetoshko, V. Skidanov, and A. Stempkovskiy, Sens. Lett. 11, 59 (2013).

    Article  Google Scholar 

  21. B. Dufay, S. Saez, C. Cordier, et al., IEEE Sensors J. 11, 3211 (2011).

    Article  Google Scholar 

  22. P. M. Vetoshko, V. G. Shavrov, and V. I. Shcheglov, Elektron. Zh. Radioelektron., No. 11, 1 (2014). http://jre.cplire.ru/jre/nov14/1/text.html. http://jre.cplire.ru/jre/nov14/1/text.pdf.

    Google Scholar 

  23. A. G. Temiryazev, M. P. Tikhomirova, and P. E. Zilberman, J. Appl. Phys. 76, 5586 (1994).

    Article  Google Scholar 

  24. P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, Zh. Exp. Tekh. Fiz. 108, 281 (1995).

    Google Scholar 

  25. Yu. V. Gulyaev, P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, J. Commun. Technol. Electron. 44, 1168 (1999).

    Google Scholar 

  26. Yu. V. Gulyaev, P. E. Zil’berman, A. G. Temiryazev, and M. P. Tikhomirova, Phys. Solid State 42, 1094 (2000).

    Article  Google Scholar 

  27. V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 54, 821 (2009).

  28. V. S. Vlasov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 59, 441 (2014).

    Article  Google Scholar 

  29. V. S. Vlasov, A. P. Ivanov, L. N. Kotov, et al., in Electromagnetic Field and Materials (Proc. XX Int. Conf., Moscow, Nov. 17–18, 2012 (MEI, Moscow, 2012), p. 248.

    Google Scholar 

  30. V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, in Electromagnetic Field and Materials (Proc. XXI Int. Conf., Moscow, Nov. 16–17, 2013) (MEI, Moscow, 2013), p. 199.

    Google Scholar 

  31. V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, Elektron. Zh. Radioelektron., No. 11, 1 (2013). http://jre.cplire.ru/jre/nov13/3/text.html, http://jre.cplire.ru/jre/nov13/3/text.pdf.

    Google Scholar 

  32. V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, Elektron. Zh. Radioelektron., No. 1, 1 (2014). http://jre.cplire.ru/jre/jan14/11/text.html, http://jre.cplire.ru/jre/jan14/11/text.pdf.

    Google Scholar 

  33. V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 60, 75 (2015).

  34. V. S. Vlasov, A. P. Ivanov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 60, 280 (2015).

    Article  Google Scholar 

  35. T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).

    Article  Google Scholar 

  36. R. Le-Crou and R. Comstok, in Physical Acoustics. Principles and Methods, Ed. by W. P. Mason, Vol. 3: Lattice Dynamics (Academic, New York, 1964; Mir, Moscow, 1968).

  37. S. P. Strelkov, Introduction to the Theory of Oscillations (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  38. V. S. Vlasov, L. N. Kotov, V. G. Shavrov, and V. I. Shcheglov, J. Commun. Technol. Electron. 55, 645 (2010).

    Article  Google Scholar 

  39. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (McGraw-Hill, New York, 1961; Nauka, Moscow, 1973).

    MATH  Google Scholar 

  40. A. K. Sushkevich, Fundamentals of Higher Algebra (Gostechizdat, Moscow, 1941) [in Russian].

    Google Scholar 

  41. A. P. Malozemoff, J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shcheglov.

Additional information

Original Russian Text © P.M. Vetoshko, V.G. Shavrov, V.I. Shcheglov, 2017, published in Radiotekhnika i Elektronika, 2017, Vol. 62, No. 4, pp. 364–381.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetoshko, P.M., Shavrov, V.G. & Shcheglov, V.I. Role of elastic dissipation in the formation of the resonant properties of magnetization precession in the magnetoelastic environment. J. Commun. Technol. Electron. 62, 389–405 (2017). https://doi.org/10.1134/S1064226917030202

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226917030202

Navigation