Advertisement

Experimental study of the effect of parametric noise on the Andronov–Hopf bifurcation in brusselator

  • K. V. Zakoretskii
  • V. V. SemenovEmail author
  • T. E. Vadivasova
Dynamics Chaos in Radiophysics and Electronics

Abstract

Specific features of the Andronov–Hopf bifurcation in the model of brusselator in the presence of parametric noise are numerically and experimentally studied. Regularities of evolution of the probability distribution with an increase in the noise intensity are typical of the additive and multiplicative effect of the Gaussian white noise. The existence of bifurcation interval corresponding to the gradual transition to the generation regime is experimentally revealed for both additive and multiplicative noise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Stratonovich, Random Processes in Dynamic Systems (Izhev. Inst. Komp. Issled., Izhevsk, 2009).Google Scholar
  2. 2.
    W. Horsthemke and R. Lefever, Noise Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, Heidelberg, 1984; Mir, Moscow, 1987).zbMATHGoogle Scholar
  3. 3.
    L. Arnold, Random Dynamical Systems (Springer, Berlin, 2003).Google Scholar
  4. 4.
    L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta, and S. Santucci, Phys. Rev. Lett. 62, 349 (1989).CrossRefGoogle Scholar
  5. 5.
    V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Shimanskii-Gaer, Usp. Fiz. Nauk 42, 7 (1999).CrossRefGoogle Scholar
  6. 6.
    A. Pikovsky and J. Kurths, Phys. Rev. Lett. 78, 775 (1997).MathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Lindner and L. Schimansky-Geier, Phys. Rev. E 60, 7270 (1999).CrossRefGoogle Scholar
  8. 8.
    B. Shulgin, A. Neiman, and V. Anishchenko, Phys. Rev. Lett. 75, 4157 (1995).CrossRefGoogle Scholar
  9. 9.
    S. K. Han, T. G. Yim, D. E. Postnov, and O. V. Sosnovtseva, Phys. Rev. Lett. 83, 1771 (1999).CrossRefGoogle Scholar
  10. 10.
    V. S. Anishchenko and M. A. Safonova, Pis’ma Zh. Tekh. Fiz. 12, 740 (1986).Google Scholar
  11. 11.
    L. Schimansky-Geier and H. Herzel, J. Statistical Phys. 70, 141 (1993).CrossRefGoogle Scholar
  12. 12.
    L. Arnold, N. Sri Namachshivaya, K. R. Schenk-Yoppe, Int. J. Bifurcation and Chaos 6, 1947 (1996).CrossRefGoogle Scholar
  13. 13.
    W. Ebeling, H. Herzel, W. Richert, and L. Schimansky-Geier, Z. Angew. Math. Mech. (ZAMM) 66, 141 (1986).MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Lefever and R. Turner, Phys. Rev. Lett. 56, 1631 (1986).MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Olarrea and F. J. de la Rubia, Phys. Rev. E 53, 268 (1996).CrossRefGoogle Scholar
  16. 16.
    I. Bashkirtseva, L. Ryashko, and H. Schurz, Chaos, Solitons, Fractals 39, 7 (2009).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Zakharova, T. Vadivasova, V. Anishchenko, et al., Phys. Rev. E 81, 1 (2010).CrossRefGoogle Scholar
  18. 18.
    L. Franzoni, L. Mannella, P. McClintock, and F. Moss, Phys. Rev. F 36, 834 (1987).CrossRefGoogle Scholar
  19. 19.
    V. V. Semenov, T. E. Vadivasova, and V. S. Anishchenko, Tech. Phys. Lett. 39, 632 (2013).CrossRefGoogle Scholar
  20. 20.
    V. V. Semenov, K. V. Zakoretskii, and T. E. Vadivasova, Nelin. Dinamika 9 (3), 1 (2013).Google Scholar
  21. 21.
    P. Glandsdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971).Google Scholar
  22. 22.
    N. N. Nikitin and V. D. Razevig, Zh. Vychislit. Mat. Mat. Fiz. 18 (1), 107 (1978).MathSciNetGoogle Scholar
  23. 23.
    D. Luchinsky, P. McClintock, and M. Dykman, Rep. Prog. Phys. 61, 889 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • K. V. Zakoretskii
    • 1
  • V. V. Semenov
    • 1
    Email author
  • T. E. Vadivasova
    • 1
  1. 1.Chernyshevskii State UniversitySaratovRussia

Personalised recommendations