Advertisement

A novel algorithm for solution of a combinatory set partitioning problem

  • V. A. Lyubetsky
  • A. V. Seliverstov
Theory and Methods of Information Processing
  • 34 Downloads

Abstract

A novel efficient algorithm for solution of the problem of equal partitioning of a set with predefined weights of elements is proposed. The algorithm is based on calculation of a linear group preserving an invariant: the set of zeros of a cubic form. Algorithms for solution of related problems, including the problem of the search for the second solution if the first solution is known, are discussed.

Keywords

partitioning algorithm cubic form computational complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Schrijver, Theory of Linear and Integer Programming (Wiley, New York, 1986; Mir, Moscow, 1991).zbMATHGoogle Scholar
  2. 2.
    S. Margulies, S. Onn, and D. V. Pasechnik, “On the complexity of Hilbert refutations for partition,” J. Symbolic Comput. 66, 70–83 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    K. Yu. Gorbunov, A. V. Seliverstov, and V. A. Lyubetsky, “Geometric relationship between parallel hyperplanes, quadrics, and vertices of a hypercube,” Probl. Inf. Transm. 48, 185–192 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. V. Seliverstov, “Monomials in quadratic forms,” J. Appl. Ind. Math. 7, 431–434 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. V. Seliverstov and V. A. Lyubetsky, “On symmetric matrices with indeterminate leading diagonals,” Probl. Inf. Transm. 45, 258–263 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K. Yu. Gorbunov and V. A. Lyubetsky, “The tree nearest on average to a given set of trees,” Probl. Inf. Transm. 47, 274–288 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    L. Yu. Rusin, E. V. Lyubetskaya, K. Yu. Gorbunov, and V. A. Lyubetsky, “Reconciliation of gene and species trees,” Biomed. Res. Int. 2014, Article ID 642089 (2014).Google Scholar
  8. 8.
    A. V. Seliverstov, “Polytopes and connected subgraphs,” Diskr. Analiz Issled. Oper. 21 (3), 82–86 (2014).MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. G. Kanovei and V. A. Lyubetsky, “On Effective σ-boundedness and σ-compactness in Solovay’s model,” Math. Notes 98, 273–282 (2015).CrossRefzbMATHGoogle Scholar
  10. 10.
    V. G. Kanovei and V. A. Lyubetsky, “A definable E0 class containing no definable elements,” Arch. Math. Logic 54, 711–723 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V. G. Kanovei and V. A. Lyubetsky, “On Effective σ-boundedness and σ-compactness,” Math. Logic Quart. 59, 147–166 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. G. Kanovei and V. A. Lyubetsky, “Effective compactness and sigma-compactness,” Math. Notes 91, 789–799 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    V. G. Kanovei and V. A. Lyubetsky, “An infinity which depends on the axiom of choice,” Appl. Math. Comput. 218, 8196–8202 (2012).MathSciNetzbMATHGoogle Scholar
  14. 14.
    I. V. Latkin and A. V. Seliverstov, “Computational complexity of fragments of the theory of the field of complex numbers,” Vestnik Karagandinskogo Univ. Ser. Mat., No. 1(77) 47–55 (2015).Google Scholar
  15. 15.
    A. V. Seliverstov and V. A. Lyubetsky, “About forms equal to zero at each vertex of a cube,” J. Commun. Technol. Electron. 57, 892–895 (2012).CrossRefGoogle Scholar
  16. 16.
    S. G. Vleduts, G. A. Kabatyansky, and V. V. Lomakov, “On error correction with errors in both the channel and syndrome,” Probl. Inf. Transm. 51, 132–138 (2015).MathSciNetCrossRefGoogle Scholar
  17. 17.
    P. V. Trifonov, “Successive cancellation decoding of Reed–Solomon codes,” Probl. Inf. Transm. 50, 303–312 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    I. V. Zhilin, A. A. Kreshchuk, and V. V. Zyablov, “Generalized error-locating codes and minimization of redundancy for specified input and output error probabilities,” J. Commun. Technol. Electron. 60, 695–706 (2015).CrossRefGoogle Scholar
  19. 19.
    R. A. Gershgorin, L. I. Rubanov, and A. V. Seliverstov, “Easily computable invariants for hypersurface recognition,” J. Commun. Technol. Electron. 60, 1429–1431 (2015).CrossRefGoogle Scholar
  20. 20.
    D. Yu. Grigor’ev, “The complexity of the decision problem of the first order theory of algebraically closed fields,” Math. USSR Izv. 29, 459–475 (1987).CrossRefzbMATHGoogle Scholar
  21. 21.
    Z. Jelonek and T. Lenarcik, “Automorphisms of affine smooth varieties,” Proc. Amer. Math. Soc. 142, 1157–1163 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A. V. Seliverstov, “Cubic hypersurfaces with an odd number of singular points,” in Proc. Int. Conf. Polynomial Computer Algebra'2015, St. Petersburg, Apr. 13–18, 2015 (Euler Int. Math. Inst., VVM Publ., St. Petersburg, 2015), pp. 85–86.Google Scholar
  23. 23.
    A. V. Seliverstov, “About computational complexity of the search for singular points,” in Discrete Mathematics, Algebra and Their Applications (Proc. Int. Sci. Conf., Minsk, Sept. 14–18, 2015 (Inst. Mat. NAN Belarusi, Minsk, 2015), pp. 135–137.Google Scholar
  24. 24.
    A. V. Seliverstov, “Cubic forms without monomials in two variables,” Vestn. Udmurtskogo Univ., Mat, Mekh., Komp. Nauki 25 (1), 71–77 (2015).zbMATHGoogle Scholar
  25. 25.
    V. G. Naidenko, “About complexity of finding the second solution of an NP-complete problem,” Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Mat. Nav., No. 2, 114–118 (2012).Google Scholar
  26. 26.
    L. I. Rubanov, “Parallelization of nonuniform loops in supercomputers with distributed memory,” J. Commun. Technol. Electron. 59, 639–646 (2014).CrossRefGoogle Scholar
  27. 27.
    N. A. Kuznetsov, F. F. Pashchenko, N. G. Ryabykh, E. M. Zakharova, and I. K. Minashina, “Optimization algorithms in scheduling problems of the rail transport,” J. Commun. Technol. Electron. 60, 637–646 (2015).CrossRefGoogle Scholar
  28. 28.
    F. N. Grigor’ev, Yu. V. Gulyaev, S. N. Dvornikova, O. A. Kozdoba, and N. A. Kuznetsov, “Problem of pattern recognition in the diagnostics of cardiovascular diseases using the ECG data,” J. Commun. Technol. Electron. 60, 673–677 (2015).CrossRefGoogle Scholar
  29. 29.
    P. A. Chochia, “Transition from 2D- to 3D-images: modification of two-scale image model and image processing algorithms,” J. Commun. Technol. Electron. 60, 678–687 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)MoscowRussia

Personalised recommendations