Information-theoretic analysis of efficiency of the phonetic encoding–decoding method in automatic speech recognition

  • V. V. Savchenko
  • A. V. Savchenko
Theory and Methods of Signal Processing


A words phonetic decoding method in automatic speech recognition is considered. The properties of Kullback–Leibler divergence are used to synthesize the estimation of the distribution of divergence between minimum speech units (e.g., single phonemes) inside a single class. It is demonstrated that the minimum variance of the intraphonemic divergence is reached when the phonetic database is tuned to the voice of a single speaker. The estimations are proven by experimental results on the recognition of vowel sounds and isolated words of Russian language.


Speech Perception Automatic Speech Recognition Automatic Speech Recognition System Voice Signal Single Speaker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Savchenko, J. Commun. Technol. Electron. 59, 310 (2014).CrossRefGoogle Scholar
  2. 2.
    V. V. Savchenko and A. V. Savchenko, Inf.-Upravl. Sist., No. 2, 7 (2013).Google Scholar
  3. 3.
    V. V. Savchenko, J. Commun. Technol. Electron. 50, 286 (2005).Google Scholar
  4. 4.
    S. P. Masters, US Patent No. 6301560 B1 (09.10.2001).Google Scholar
  5. 5.
    M. Schuster, Lect. Notes Comp. Sci. 6230, 8 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Grant and P. Gregor, US Patent No. 8175883 B2, (08.05.2012).Google Scholar
  7. 7.
    Springer Handbook of Speech Recognition, Eds. J. Benesty, M. Sondh, Y. Huang (Springer, New York, 2008).Google Scholar
  8. 8.
    L. Rabiner, Proc. IEEE 77, 257 (1989).CrossRefGoogle Scholar
  9. 9.
    T. Gruber, A. Cheyer, D. Kittlaus, et al., US Patent No. 0016678 A1 (19.01.2012).Google Scholar
  10. 10.
    A. V. Savchenko, Autom. Remote Control 74, 1225 (2013).CrossRefGoogle Scholar
  11. 11.
    S. Kullback, Information Theory and Statistics (Dover, New York, 1997).zbMATHGoogle Scholar
  12. 12.
    V. V. Savchenko, Radiotekh. Elektron. (Moscow) 42, 426 (1997).Google Scholar
  13. 13.
    S. L. Marple, Jr. Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs, N. J., 1987; Mir, Moscow, 1990).Google Scholar
  14. 14.
    D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, et al., in Proc. Int. Radar Symp. (IRS 2011), Leipzig, Sep. 7–9, 2011 (IEEE, New York, 2011).Google Scholar
  15. 15.
    V. V. Savchenko, D. Yu. Akat’ev, I. V. Gubochkin, et al., Ofits. Byull. “Progr. EVM, Bazy Dannykh, Topol. Integral. Mikroskhem”, Progr. No. 2008615442 (14.11.2008).Google Scholar
  16. 16.
    P. Müller, P. Neumann und R. Storm, Tafeln der mathematischen Statistik (Fachbuchverlag, Leipzig, 1973; Finansy i statistika, Moscow, 1982).zbMATHGoogle Scholar
  17. 17.
    A. V. Savchenko and L. V. Savchenko, Pattern Recogn. Lett., No. 65, 145 (2015).MathSciNetGoogle Scholar
  18. 18.
    A. V. Savchenko, in Proc. 6th Int. Conf. on Image and Signal Processing (ICISP 2014.) Cherbourg, 30 Jun.–02 Jul., 2014; Lect. Notes Comp. Sci. 8509, 638 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Nizhny Novgorod State Linguistic UniversityNizhny NovgorodRussia
  2. 2.National Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations