Advertisement

Generalized error-locating codes and minimization of redundancy for specified input and output error probabilities

  • I. V. Zhilin
  • A. A. KreshchukEmail author
  • V. V. Zyablov
Theory and Methods of Information Processing

Abstract

Generalized error-locating codes are discussed. An algorithm for calculation of the upper bound of the probability of erroneous decoding for known code parameters and the input error probability is given. Based on this algorithm, an algorithm for selection of the code parameters for a specified design and input and output error probabilities is constructed. The lower bound of the probability of erroneous decoding is given. Examples of the dependence of the probability of erroneous decoding on the input error probability are given and the behavior of the obtained curves is explained.

Keywords

Error Probability Code Rate LDPC Code Code Word Target Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. R. Gantmacher, The Theory of Matrices (Nauka, Moscow, 1966; Chelsea, New York, 1959) [in Russian].Google Scholar
  2. 2.
    E. L. Blokh and V. V. Zyablov, Linear Concatenated Codes (Nauka, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    E. L. Blokh and V. V. Zyablov, Generalized Concatenated Codes (Svyaz’, Moscow, 1976) [in Russian].zbMATHGoogle Scholar
  4. 4.
    V. V. Zyablov, New Interpretation of Error Location Codes, Their Correcting Properties, and Decoding Algorithms (Nauka, Moscow, 1972) [in Russian].Google Scholar
  5. 5.
    I. G. Kobozeva and V. V. Zyablov, “Using GEL codes for optical channel,” in Proc. 12th Int. Symp. on Problems of Redundancy in Information Systems, St. Petersburg, Russia, May 26–30, 2009 (St-Petersburg State Univ. of Aerospace Instrumentation, St. Petersburg, 2009), pp. 126–127.Google Scholar
  6. 6.
    A. O. Nekuchaev and V. V. Zyablov, “Project “Continent”: a new approach to data transmission over backbone fiber-optic communication lines,” FotonEkspress, No. 3, 40–42 (2008).Google Scholar
  7. 7.
    J. Maucher, V. Zyablov, and M. Bossert, “On the equivalence of generalized concatenated codes and generalized error location codes,” IEEE Trans. Inf. Theory 46, 642–649 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. V. Zyablov and I. G. Kobozeva, “Code constructions on the basis of three-dimensional generalized error location codes,” Inf. Protsessy 13 (1), 1–18 (2013).Google Scholar
  9. 9.
    J. K. Wolf and B. Elspas, “Error location codes—a new concept in error control,” IEEE Trans. Inf. Theory 9, 113–117 (1965).MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. K. Wolf, “On an extended class of error location codes,” Inf. Control., 8, 163–169 (1965).CrossRefzbMATHGoogle Scholar
  11. 11.
    A. Fahrner, H. Griesser, R. Klarer, V. V. Zyablov, “Lowcomplexity GEL codes for digital magnetic storage systems,” IEEE Trans. Magn. 40, 3093–3095 (2004).CrossRefGoogle Scholar
  12. 12.
    A. Fahrner, H. Griesser, R. Klarer, and V. V. Zyablov, “Generalized error location codes for digital magnetic storage systems,” in Proc. 5th Int. ITG 2004 Conf. Source Channel Coding (SCC), Erlangen, Germany, Jan. 14–16, 2004 (VDE Verlag, Berlin, 2004), pp. 219–226.Google Scholar
  13. 13.
    V. B. Afanas’ev and E. M. Gabidulin, Coding in Radio Electronics (Radio i svyaz', Moscow, 1986) [in Russian].Google Scholar
  14. 14.
    I. V. Zhilin, F. I. Ivanov, P. S. Rybin, and V. V. Zyablov, “GEL codes on the basis of binary LDPC codes,” in Information Technologies and Systems (Proc. 36th Int. Conf. Young Researchers and Specialists, Kaliningrad, 2013) (State Univ. Aerospace Instrument, St. Petersburg, 2013), pp. 485–489.Google Scholar
  15. 15.
    I. Zhilin and V. Zyablov, “LDPC Code construction as a generalized concatenated code,” in Proc. 2014 14th Int. Symp. “Problems of Redundancy in Information and Control Systems”, ISBN 978-5-8088-0909-3.Google Scholar
  16. 16.
    A. A. Kreshchuk and V. V. Zyablov, “Generalized cconcatenated system with embedded space-time codes for MIMO systems,” Inf. Protsessy 14 (2), 160–177 (2014).Google Scholar
  17. 17.
    A. A. Kreshchuk and V. V. Zyablov, “Generalized concatenated system with embedded space-time codes for MIMO systems”. J. Comm. Technol. Electron. 59, 1489–1500 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • I. V. Zhilin
    • 1
  • A. A. Kreshchuk
    • 1
    Email author
  • V. V. Zyablov
    • 1
  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations