Performance comparison of proposed 3-d coherent spatial-phase-time coding/decoding with super structured fiber Bragg grating-based optical CDMA systems

Theory and Methods of Signal Processing


In this paper, performance comparison in terms of bit error rate (BER) of proposed WDM compatible optical CDMA system incorporating 3-D spectral-phase-time encoding/decoding to a 7 chip-super-structured fiber Bragg grating (SSFBG)-based optical code division multiple access (OCDMA) system is investigated. Coding and decoding using binary [0, π] phase chips is demonstrated for six users at 5 Gb/s, and a single coded signal is separated with acceptable bit-error rate ≤10−9. In our proposed optical CDMA system encoding and decoding is done by converting hadamard codes (used for conventional CDMA system) to phase codes. It is then compared with two optical pulse retiming and reshaping systems incorporating super structured fiber Bragg gratings (SSFBGs) as pulse shaping elements. Simulation results show that with all input bands having same sample rate, size data rates our proposed codes with even larger number of channels perform better in terms of eye opening & BER.


code-division multiple-access (CDMA) code division multiplexing optical code-division multiple-access (OCDMA) optical communications wavelength-division multiplexing (WDM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, C. V. Bennett, and W. J. Lennon, “Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA,” IEEE J. Lightwave Technol. 21, 2524–2533 (2003).CrossRefGoogle Scholar
  2. 2.
    A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, C. V. Bennet, and W. J. Lennon, “High-performance optical CDMA system based on 2-D optical orthogonal codes,” IEEE J. Lightwave Technol. 22, 2409–2419 (2004).CrossRefGoogle Scholar
  3. 3.
    A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage, and J. M. Morookian, “Strategies for realizing optical CDMA for dense, high-speed, long span, optical network applications,” IEEE J. Lightwave Technol. 18, 1685–1697 (2000).CrossRefGoogle Scholar
  4. 4.
    Xiaoli Sun and F. M. Davidson, “Photon Counting with Silicon Avalanche Photodiodes,” J. Lightwave Technol. 10(8), August (1992).CrossRefGoogle Scholar
  5. 5.
    A. Stok and E. H. Sargent, “System Performance Comparison of Optical CDMA and WDMA in a Broadcast Local Area Network”, IEEE Commun. Lett. 6, 409–411 (2002).CrossRefGoogle Scholar
  6. 6.
    J. A. Salehi, “Code division multiple access techniques in optical fiber networks, part 1: Fundamental principles,” IEEE Trans. Commun. 37, 824–833 (1989).CrossRefGoogle Scholar
  7. 7.
    E. S. Shivaleela, A. Selvarajan, and T. Srinivas, “Two-dimensional optical orthogonal codes for fiber-optic cdma networks,” J. Lightwave Technol. 23, 647–654 (2005).CrossRefGoogle Scholar
  8. 8.
    E. S. Shivaleela, K. N. Sivarajan, and A. Selvarajan, “Design of a new family of two-dimensional codes for fiber-optic cdma networks,” J. Lightwave Technol. 16, 5010–508 (1998).CrossRefGoogle Scholar
  9. 9.
    R. S. Kaler, Ajay K. Sharma, and T. S. Kamal, “Comparison of pre-, post- and symmetrical-dispersion compensation schemes for 10 Gb/s NRZ links using standard and dispersion compensated fibers,” Opt. Commun. 209, 107–123 (2002).CrossRefGoogle Scholar
  10. 10.
    D. D. Sampson, G. J. Pendock, and R. A. Griffin, “Photonic code division multiple access communications,” Fiber Integr. Opt. 16, 129–157 (1997).CrossRefGoogle Scholar
  11. 11.
    A. M. Weiner and J. A. Salehi, “Optical code-division multiple access,” in Photonics in Switching, Ed. by J. E. Midwinter (Academic, San Diego, CA, 1993), vol. 2, pp. 73–118.Google Scholar
  12. 12.
    J. E. McGeehan, S. M. Reza, M. Nezam, P. Saghari, A. E. Willner, R. Omrani, and V. Kumar, “3D time-wavelength-polarization OCDMA coding for increasing the number of users in OCDMA LANs,” in Proc. 2004 Opt. Fiber Communication Conf. (OFC’04), Los Angeles, CA, 2004, Paper FE5.Google Scholar
  13. 13.
    J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).CrossRefGoogle Scholar
  14. 14.
    Z. Jiang, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Four-User, 2.5-Gb/s, Spectrally Coded OCDMA System Demonstration Using Low-Power Nonlinear Processing,” J. Lightwave Technol. 23, No. 1, 143–158 (2005).CrossRefGoogle Scholar
  15. 15.
    Y. Du, S. J. B. Yoo, and Z. Ding, “Non-Uniform Spectral Phase Encoding in Optical CDMA Networks,” IEEE Photonics Technol. Lett. 18, 2505–2507 (2006).CrossRefGoogle Scholar
  16. 16.
    K. J. Horadam Hadamard Matrices and Their Applications (Princeton Univ. Press, Princeton, 1986).Google Scholar
  17. 17.
    Xu Wang, Koji Matsushima, Akihiko Nishiki, Naoya Wada, and Ken-ichi Kitayama, “High reflectivity superstructured FBG for coherent optical code generation and recognition,” Opt. Express 12, 5457–5468 (2004).CrossRefGoogle Scholar
  18. 18.
    Peh Chiong The, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven and 63-chip optical code-division multiple-aAccess encoders and decoders based on super structured fiber Bragg grating,” Journal of Lightwave Technology 19(9), (Sept. 2001).Google Scholar
  19. 19.
    K. J. Horadam Hadamard Matrices and Their Applications (Princeton Univ. Press, Princeton, 1986).Google Scholar
  20. 20.
    VPI transmission maker optical systems User’s Manual, “Optical CDMA with 7-chip SSFG Encoder design,” VPI transmission maker systems demonstration, Appendix A, pp. 377–378 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication Engineering Thapar UniversityPatialaIndia

Personalised recommendations