An endoscope based on extremely anisotropic metamaterials for applications in magnetic resonance imaging

  • A. P. Slobozhanyuk
  • I. V. Melchakova
  • A. V. Kozachenko
  • D. S. Filonov
  • C. R. Simovski
  • P. A. Belov
Novel Radio Systems and Elements


The possibility of transfer of the spatial distribution of the near-zone RF magnetic field recorded by receiving coils during magnetic resonance imaging with the use of an endoscope designed from an extremely anisotropic metamaterial is considered. Application of such a material can lead to an increase in the image resolution and/or reduction of the object scanning time in the tomograph. Possibilities of the endoscope for the undistorting transfer of the spatial distribution of the alternating magnetic field through significant distances are theoretically studied and transfer of different spatial field distributions from the isocenter of the tomograph to the region of weak static magnetic field is experimentally demonstrated. The dependence of the quality of obtained images on positions receiving coils in the endoscope is studied. It is found that, in addition to the image transfer with a small distortion, it is possible to significantly increase the signal-to-noise ratio by pumping standing waves in a medium consisting of parallel wires.


Nuclear Magnetic Resonance Signal Radio Frequency Coil Parallel Wire Magnetostatic Field Ultra High Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. G. Shellock, Magnetic Resonance: Procedures: Health Effects and Safety (CRC Press, Boca Raton, 2001).Google Scholar
  2. 2.
    V. Kuperman, Magnetic Resonance Imaging: Physical Principles and Applications (Academic, San Diego, 2000).Google Scholar
  3. 3.
    P. A. Rink, Magnetic Resonance in Medicine (Blackwell Scientific Publication, Oxford, 2003).Google Scholar
  4. 4.
    S. Vahasalo, NMR and MRI (Phillips Medical Systems MR Finland, Vantaa, 2008).Google Scholar
  5. 5.
  6. 6.
    R. J. Stafford, Med. Phys. 32, 2077 (2005).CrossRefGoogle Scholar
  7. 7.
    R. H. Hashemi, W. G. Bradley, and C. J. Lisanti, MRI: The Basics (Lippincott Williams & Wilkins, Philadelphia, 2010).Google Scholar
  8. 8.
    A. O. Kaznacheeva, Luchevaya Diagnostika Terapiya, No. 4(1), 83 (2010).Google Scholar
  9. 9.
    J. Dabek, J. O. Nieminen, R. E. Sepponen, et al., J. Magn. Reson. 224, 22 (2012).CrossRefGoogle Scholar
  10. 10.
    D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305(5685), 788 (2004).CrossRefGoogle Scholar
  11. 11.
    V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).CrossRefGoogle Scholar
  12. 12.
    Q.-H. Park, Contemp. Phys. 50, 407 (2009).CrossRefGoogle Scholar
  13. 13.
    P. Biagioni, J. S. Huang, and B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).CrossRefGoogle Scholar
  14. 14.
    J. B. Pendry, D. Schurig, and D. R. Smith, Science 312(5781), 1780 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    U. Leonhardt, Science 312(5781), 1777 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    D. Schurig, J. J. Mock, B. J. Justice, et al., Science 314(5801), 977 (2006).CrossRefGoogle Scholar
  17. 17.
    N. Chanda, P. Kan, L. D. Watkinson, et al., Nanomed. Nanotechnol. Biol. Med. 6, 201 (2010).CrossRefGoogle Scholar
  18. 18.
    P. A. Belov, Y. Hao, and S. Sudhakaran, Phys. Rev. B 73, 033108 (2006).CrossRefGoogle Scholar
  19. 19.
    A. D. Boardman, V. V. Grimalsky, Yu. S. Kivshar, et al., Laser Photonics Rev. 5, 287 (2011).CrossRefGoogle Scholar
  20. 20.
    V. M. Shalaev, Nat. Photonics 1(1), 41 (2007).CrossRefMathSciNetGoogle Scholar
  21. 21.
    J. A. Schuller, E. S. Barnard, W. Cai, et al., Nat. Mater. 9, 193 (2010).CrossRefGoogle Scholar
  22. 22.
    V. Slyusar, Elektronika NTB, No. 7, 70 (2009).Google Scholar
  23. 23.
    V. Slyusar, Pervaya Milya, Nos. 3–4, 44 (2010).Google Scholar
  24. 24.
    N. N. Rozanov, Priroda (Moscow, Russ. Fed.), No. 6 (2008).Google Scholar
  25. 25.
    A. E. Dubinov and L. A. Mytareva, Usp. Fiz. Nauk 180, 475 (2010).CrossRefGoogle Scholar
  26. 26.
    P. A. Belov, C. R. Simovski, P. Ikonen, M. G. Silveirinha, and Y. Hao, J. Commun. Technol. Electron. 52, 1009 (2007).CrossRefGoogle Scholar
  27. 27.
    A. V. Kil’dishev and V. M. Shalaev, Usp. Fiz. Nauk 181, 59 (2011).CrossRefGoogle Scholar
  28. 28.
    I. B. Vendik and O. G. Vendik, Tech. Phys. 83, 1 (2013).CrossRefGoogle Scholar
  29. 29.
    R. Marqués, F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (Wiley, Hoboken, 2008).Google Scholar
  30. 30.
    M. C. K. Wiltshire, J. B. Pendry, and I. R. Young, et al., Science 291(5505), 849 (2001).CrossRefGoogle Scholar
  31. 31.
    M. J. Freire, L. Jelinek, R. Marques, and M. Lapine, J. Magn. Reson. 203(1), 81 (2010).CrossRefGoogle Scholar
  32. 32.
    M. A. Lopez, M. J. Freire, J. M. Algarin, et al., Appl. Phys. Lett. 98, 133508 (2011).CrossRefGoogle Scholar
  33. 33.
    X. Radu, A. Lapeyronne, and C. Craeye, Electromagnetics 28, 531 (2008).CrossRefGoogle Scholar
  34. 34.
    X. Radu, D. Garray, and C. Craeye, Metamaterials 3(2), 90 (2009).CrossRefGoogle Scholar
  35. 35.
    P. A. Belov, Y. Zhao, Y. Hao, and C. Parini, Opt. Lett. 34, 527 (2009).CrossRefGoogle Scholar
  36. 36.
    Y. Zhao, P. A. Belov, and Y. Hao, J. Opt. A: Pure Appl. Opt. 11, 075101 (2009).CrossRefGoogle Scholar
  37. 37.
    A. E. Ageiskii, S. Yu. Kosul’nikov, and P. A. Belov, Opt. Spectrosk. 110, 572 (2011).CrossRefGoogle Scholar
  38. 38.
    P. A. Belov, C. R. Simovski, and P. Ikonen, Phys. Rev. B 71, 193105 (2005).CrossRefGoogle Scholar
  39. 39.
    P. A. Belov, Y. Zhao, S. Sudhakaran, et al., Appl. Phys. Lett. 89, 262109 (2006).CrossRefGoogle Scholar
  40. 40.
    P. A. Belov, G. K. Palikaras, Y. Zhao, et al., Appl. Phys. Lett. 97, 191905 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. P. Slobozhanyuk
    • 1
  • I. V. Melchakova
    • 1
  • A. V. Kozachenko
    • 1
  • D. S. Filonov
    • 1
  • C. R. Simovski
    • 1
    • 2
  • P. A. Belov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Aalto University, School of Electrical EngineeringEspooFinland

Personalised recommendations