Advertisement

Multicriteria Steiner tree with the cost of Steiner vertices

  • M. Sh. Levin
  • A. A. Zamkovoy
Articles from the Russian Journal Informatsionnye Protsessy

Abstract

The multicriteria problem of constructing the Steiner tree with consideration for the cost of additional Steiner vertices is studied. Formulations of the problems of constructing the covering Steiner trees and algorithmic approaches are described. The engineering formulation of the problem is aimed at constructing a telecommunications network with allowance for the spatial distribution of radio interferences. An approach to solving the formulated milticriterion problem on the basis of combination of two solving schemes is proposed: (1) the basic scheme for constructing a covering Steiner tree on the basis of clustering the vertices of the initial graph and (2) the general scheme for constructing the covering Steiner trees with allowance for the number of additional vertices and calculation of the Pareto-efficient solutions. A module based on the modified Prim’s algorithm for constructing a multicriteria covering tree is additionally used. The vertices of the initial graph are clustered on the basis of a hierarchical algorithm. Examples of a computational experiment on constructing the multicriteria Steiner trees are given.

Keywords

Covering Tree Steiner Point Steiner Tree Problem Initial Graph Steiner Minimal Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. W. Bern and R. L. Graham, “The Shortest Network Problem,” Sci. Am. 3, 64–70 (1989).Google Scholar
  2. 2.
    X. Cheng and D. Z. Du, Steiner Trees in Industry (Kluwer, Dordrecht, 2001).Google Scholar
  3. 3.
    S. Chopra, E. R. Gores, and M. R. Rao, “Solving the Steiner Tree Problem on Graph Using Branch and Cut,” ORSA J. Comput. 4, 320–335 (1992).zbMATHGoogle Scholar
  4. 4.
    D. Cieslik, Steiner Minimal Trees (Springer-Verlag, Berlin, 1998).zbMATHGoogle Scholar
  5. 5.
    D. Cieslik, Steiner Ratio, (Springer-Verlag, Berlin, 2001).zbMATHGoogle Scholar
  6. 6.
    D. R. Dreyer and M. L. Overtony, Two Heuristics for the Euclidean Steiner Tree Problem, J. Global Optim. 13(1), 95–106 (1998).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    D. Z. Du and X. Hu, Steiner Tree Problem in Computer Communication Networks (World Scientific, Singapore, 2008).CrossRefGoogle Scholar
  8. 8.
    C. Fishburn, Utility Theory for Decision Making (Wiley, New York, 1970).zbMATHGoogle Scholar
  9. 9.
    M. R. Garey and D. S. Johnson, Computers and Intractaility. The Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York, 1979).Google Scholar
  10. 10.
    C. Gil, J. Ortega, M. G. Montoya, and R. Banos, “A Mixed Heuristic for Circuit Partitioning,” J. Comput. Opt. Appl. 23, 321–340 (2001).CrossRefMathSciNetGoogle Scholar
  11. 11.
    E. N. Gilbert, R. L. Graham, and D. S. Johnson, “The Complexity of Computing Steiner Minimal Trees,” SIAM J. Appl. Math. 32, 835–859 (1977).CrossRefMathSciNetGoogle Scholar
  12. 12.
    E. N. Gordeev and O. G. Tarastsov, The Steiner Problem: A Review Diskret. Mat. 56(2), 3–28 (1993) [in Russian].MathSciNetGoogle Scholar
  13. 13.
    B. Hendrickson, and R. Leland, A Multilevel Algorithm for Partitioning Graphs. Technical Report SAND93-1301 (Sandia National Laboratories, Albuquerque, NM, 1993).Google Scholar
  14. 14.
    F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem (Kluwer, Dordrecht, 1992).zbMATHGoogle Scholar
  15. 15.
    A. O. Ivanov and A. A. Tuzhilin, Minimal Networks: The Steiner Problem and Its Generalizations (CRC, Boca Raton, FL, 1994).zbMATHGoogle Scholar
  16. 16.
    A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: a Review,” ACM Comput. Surv. 31, 264–323 (1992).CrossRefGoogle Scholar
  17. 17.
    A. Kapsalis, V. J. Rayward-Smith, and G. D. Smith, “Solving the Graphical Steiner Tree Problem Using Genetic Algorithm,” J. of ORS 44, 978–981 (1993).Google Scholar
  18. 18.
    R. L. Keeny and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs (Wiley, New York, 1976).zbMATHGoogle Scholar
  19. 19.
    B. N. Khoury, and P. M. Pardalos, “An Exact Branch and Bound Algorithm for the Steiner Problem in Graph,” in Computing in Combinatorics (Springer-Verlag, LNCS 959, 1995), pp. 582–590.Google Scholar
  20. 20.
    H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems (Springer-Verlag, Berlin, 2004).zbMATHGoogle Scholar
  21. 21.
    B. W. Kernighan and S. Lin, An Efficient Heuristic Procedure for Partitioning Graph, Bell Syst. Techn. J. 49, 291–307 (1970).zbMATHGoogle Scholar
  22. 22.
    T. Koch, and A. Matin, “Solving Steiner Tree Problems in Graphs to Optimality,” Networks, 32, 207–232 (1998).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    P. Korhonen, J. Wallenius, and S. Zionts, “Solving the Discrete Multiple Criteria Problems Using Convex Cones,” Manag. Sci 30, 1336–1345 (1984).CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    M. Sh. Levin, Combinatoral Engineering of Decomposable Systems (Kluwer, Dordrecht, 1998).Google Scholar
  25. 25.
    M. Sh. Levin, “Course ’system Design: Structural Approach’”, in Proc. of 18th Int. Conf. on Design Theory and Methoogy (DTM 2006), Pennsylvania, 2006, DETC2006-99547, pp. 475–484.Google Scholar
  26. 26.
    M. Sh. Levin, “On Teaching the System Engineering,” Inf. Tekhn. Vychisl. Sist., No. 2, 89–94 (2007) [in Russian].Google Scholar
  27. 27.
    M. Sh. Levin, “Towards Hierarchical Clustering,” in Proc. Symp. on Computer Science in Russia (CSR 2007), Ekaterinburg, Russia, Sept. 3–7, 2007 (Springer-Verlag, Lecture Notes in Computer Science 4649, 2007), pp. 205–215.Google Scholar
  28. 28.
    M. Sh. Levin, “Student Research Projects in System Design,” in Proc. 1st Int. Conf. on Computer Supported Education (CSEDU), Lisbon, 2009, (INSTICC, Lisbon, 2009), pp. 291–295.Google Scholar
  29. 29.
    M. Sh. Levin, “Combinatorial Optimization in System Configuration Design,” Autom. Remote Control 70, 519–561 (2009).CrossRefzbMATHGoogle Scholar
  30. 30.
    M. Sh. Levin, “Course on System Design (Structural Approach),” Inf. Process. 10, 303–324 (2010).Google Scholar
  31. 31.
    M. Sh. Levin, “Restructuring in Combinatorial Optimization,” Electronic Preprint arXiv: 1102.1745vl [cs.DS], 11 pp., Febr. 8, 2011; http://arxiv.org/abs/1102.1745.
  32. 32.
    M. Sh. Levin and A. A. Mikhailov, “Fragments of the Technology of Stratification of a Set of Objects,” Preprint, No. 1, ISA RAN (ISA, Russian Academy of Sciences, Moscow, 1988) [in Russian].Google Scholar
  33. 33.
    M. Sh. Levin and A. V. Safonov, “Heuristic Algorithm for Multicriterion Multiple Choice Knapsack Problem” Iskusstv. Intellekt Prinyatie Reshenii, No. 4, 53–64 (2009) [in Russian].Google Scholar
  34. 34.
    M. Sh. Levin and R. I. Nuriakhmetov, “Multicriteria Steiner Tree Problem for Communication Network,” Inf. Process. 9(3), 199–209 (2009); http://www.jip.ru/2009/199-209-2009.pdf.Google Scholar
  35. 35.
    M. Sh. Levin and A. A. Zamkovoy, “Multicriteria Steiner Tree with Consideration for Taking into Account the Cost of Vertices,” in Proc. 10th Int. Conf. CAD/CAM/PDM-2010, Moscow, 2010 (IPU RAN, Moscow, 2010), pp. 52–57 [in Russian].Google Scholar
  36. 36.
    I. Ljubic, R. Weiskircher, Pferschy, G. Klau, P. Mutzel, and M. Fischetti, “An Algorithmic Framework for the Exact Solution of the Prize Collecting Steiner Tree Problem,” Math. Program. 105, 427–449 (2006).CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    N. Maculan, P. Souza, and Vejar A. Candia, “An Approach for the Steiner Problem in Directed Graphs,” Ann. Oper. Res. 33, 471–480 (1991).CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Z. A. Melzak, “On the Problem of Steiner,” Can. Math. Bull., No. 4, 143–148 (1961).Google Scholar
  39. 39.
    C. A. S. Oliveira and M. Pardalos, “A Survey of Combinatorial Optimization Problems in Multicast Routing,” Comput. Operat. Res. 32, 1953–1981 (2005).CrossRefzbMATHGoogle Scholar
  40. 40.
    A. Pentitinen, “Minimum Cost Multicast Trees in Ad Hoc Networks,” in Proc. of 2006 IEEE Int. Conf. on Communications (ICC 2006), 2006 (IEEE, New York, 2006), Vol. 8, pp. 3676–3681.CrossRefGoogle Scholar
  41. 41.
    S. Pettie and V. Ramachandran, “An Optimal Minimum Spanning Tree Algorithm,” J. ACM 49(1), 16–34 (2002).CrossRefMathSciNetGoogle Scholar
  42. 42.
    V. Yu. Protasov, Minima and Maxima in Geometry (Lib.’ Mathematical Education’, Moscow, 2005) [in Russian].Google Scholar
  43. 43.
    V. Roy, Multicriteria Methodology for Decision Aiding (Kluwer, Dordrecht, 1996).zbMATHGoogle Scholar
  44. 44.
    S. Voss, “Steiner Tree Problems in Telecommunication,” in Handbook of Optimization in Telecommunications, Ed. by M. Resende, and P. M. Pardalos (Springer-Verlag, New York, 2006), pp. 459–492.CrossRefGoogle Scholar
  45. 45.
    M. Vujoisevic and M. Stanojevic, “A Bicriterion Steiner Tree Problem on Graph,” Yugoslav J. Operat. Res. 13(1), 25–33 (2003).CrossRefGoogle Scholar
  46. 46.
    D. M. Warme, P. Winter, and M. Zachariasen, “Exact Algorithms for Plane Steiner Tree Problems: A Computational Study,” in Advances in Steine Trees, Ed. by D.-Z. Du, J. MacGregor Smith, and J. H. Rubinstein (Kluwer, Dordrecht, 2000), pp. 81–116.Google Scholar
  47. 47.
    P. Winter, “Steiner Problem in Networks: A Survey,” Networks 17, 129–167 (1987).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. Sh. Levin
  • A. A. Zamkovoy

There are no affiliations available

Personalised recommendations