Parametric instability in the resonance detector of terahertz radiation based on FET with cylindrical gate electrode

  • A. V. Arsenin
  • A. D. Gladun
  • V. G. Leiman
  • V. L. Semenenko
  • V. I. Ryzhii
Physical Processes in Electron Devices


A possibility of the parametric instability in the resonance detector of the modulated terahertz radiation is analyzed. The detector represents a system of capacitively coupled plasma and mechanical resonators. A layer of 2D electron gas with a relatively high electron mobility and a cylindrical gate electrode that is fixed at the ends serve as the first and second resonators, respectively. The method of coupled oscillations is used to obtain the dependence of the minimum threshold pump power of the plasma circuit that corresponds to the excitation of the parametric instability on the main geometrical and electric parameters of the system.


Terahertz Radiation Parametric Instability Resonance Detector Arsenin Complex Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Physics and Modeling of Tera- and Nano-Devices, Eds M. Ryzhii, V. Ryzhii, in Selected Topics in Electronics and Systems (World Sci., Singapore, 2008), Vol. 47.Google Scholar
  2. 2.
    M. S. Shur, V. Ryzhii, Int. J. High Speed Electron. Syst. 13, 575 (2003).CrossRefGoogle Scholar
  3. 3.
    M. I. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993).CrossRefGoogle Scholar
  4. 4.
    M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes (Springer, Berlin, 2001).CrossRefGoogle Scholar
  5. 5.
    V. G. Leiman, M. Ryzhii, A. Satou, et al., J. Appl. Phys. 104, 024514 (2008).CrossRefGoogle Scholar
  6. 6.
    V. B. Braginsky and A. B. Manukin, Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, Chicago, 1977).Google Scholar
  7. 7.
    V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, Phys. Lett. A 287, 331 (2001).CrossRefGoogle Scholar
  8. 8.
    T. J. Kippenberg and K. J. Vahala, Opt. Express 15, 17172 (2007).CrossRefGoogle Scholar
  9. 9.
    H. Rokhsari, T. Kippenberg, T. Carmon, and K. J. Vahala, Opt. Express 14, 5293 (2005).CrossRefGoogle Scholar
  10. 10.
    W. H. Luoisell, Coupled Mode and Parametric Electronics (Wiley, New York, 1960).Google Scholar
  11. 11.
    G. P. Berman, A. R. Bishop, and B. M. Chernobrod, J. Phys.: Conf. Ser. 38, 171 (2006).CrossRefGoogle Scholar
  12. 12.
    R. Köhler, A. Tredicucci, F. Beltram, et al., Nature 417, 156 (2002).CrossRefGoogle Scholar
  13. 13.
    M. Dyakonov and M. Shur, IEEE Trans. Electron. Devices 43, 1640 (1996).CrossRefGoogle Scholar
  14. 14.
    K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005).CrossRefGoogle Scholar
  15. 15.
    A. V. Arsenin, A. D. Gladun, V. G. Leiman, V. L. Semenenko, and V. I. Ryzhii, J. Commun. Technol. Electron. 55, 1285 (2010).CrossRefGoogle Scholar
  16. 16.
    A. V. Arsenin, A. D. Gladun, V. G. Leiman, V. L. Semenenko, and V. I. Ryzhii, J. Commun. Technol. Electron. 54, 1322 (2009).CrossRefGoogle Scholar
  17. 17.
    V. Ryzhii, M. Ryzhii, Y. Hu, et al., Appl. Phys. Lett. 90, 203503 (2007).CrossRefGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon Press, New York, 1986).Google Scholar
  19. 19.
    A. K. Huttel, G. A. Steele, B. Witkamp, et al., Nano Lett. 9, 2547 (2009).CrossRefGoogle Scholar
  20. 20.
    P. J. Burke, S. Li, and Z. Yu, IEEE Trans. Nano 5, 314 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. V. Arsenin
  • A. D. Gladun
  • V. G. Leiman
  • V. L. Semenenko
  • V. I. Ryzhii

There are no affiliations available

Personalised recommendations