Advertisement

The complex Doppler effect in double negative media

  • I. V. Lisenkov
  • S. A. Nikitov
Radio Phenomena in Solids and Plasma

Abstract

The Doppler effect in doubly double negative acoustic media is theoretically investigated. The radiation spectra of a source moving relative to a medium are calculated with the help of the method of the Green’s functions. It is shown that several Doppler modes can be generated by a monochromatic source owing to the strong dependence of the wave number on frequency. The dependence of the width of the opacity band on the velocity of the relative motion of the source and medium is analyzed.

Keywords

Doppler Effect Constitutive Parameter Phonon Crystal Acoustic Wave Propagation Doppler Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).Google Scholar
  2. 2.
    K. M. K. H. Leong, A. Lai, and T. Itoh, Microwave Opt. Technol. Lett. 48, 545 (2006).CrossRefGoogle Scholar
  3. 3.
    D. D. Stancil, B. E. Henty, A. G. Cepni, and J. P. Van’t Hof, Phys. Rev. B 74, 060404 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Yu. Ignatov, A. A. Klimov, and S. A. Nikitov, Radiotekh. Elektron. (Moscow) 55, 480 (2010) [J. Commun. Technol. Electron. 55, 449 (2010)].Google Scholar
  5. 5.
    V. A. Burov, K. V. Dmitriev, and S. N. Sergeev, Akust. Zh. 55, 292 (2009) [Acoust. Phys. 55, 298 (2009)].Google Scholar
  6. 6.
    S. H. Lee, C. M. Park, Y. M. Seo, et al., “Reverse Doppler Effect of Sound,” http://arxiv.org.PS-cache.arxiv/pdf/0901.2772v2.pdf
  7. 7.
    J. Li and C. T. Chan, Phys. Rev. E 70, 055602 (2004).CrossRefGoogle Scholar
  8. 8.
    I.V. Lisenkov, R. S. Popov, and S.A. Nikitov, “Acoustic Wave Propagation in Fluid Metamaterial with Solid Inclsions,” Appl. Phys. A (2011); http://www.springer-link.com/content/f7t4081680848011/.
  9. 9.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar
  10. 10.
    A. E. Bazhanova, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 8, 1100 (1965).Google Scholar
  11. 11.
    H. Berger, Am. J. Phys. 44, 851 (1976).CrossRefGoogle Scholar
  12. 12.
    X. Hu, Z. Hang, J. Li, et al., Phys. Rev. E 73, 015602 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. V. Lisenkov
  • S. A. Nikitov

There are no affiliations available

Personalised recommendations