Connection of users with a telecommunications network: Multicriteria assignment problem

  • M. Sh. Levin
  • M. V. Petukhov
Articles from the Russian Journal Informatsionnye Protsessy

Abstract

The problem of connection of users with access points of a wireless telecommunications network is analyzed. An approach is based on the multicriteria assignment problem. A set of criteria involves the maximum bandwidth, the number of simultaneously served users, service reliability requirements, etc. Restrictions on the number of users served by access points and the frequency spectrum width of an access point are discussed. The combinatorial optimization problem employed belongs to the NP-hard class, and its solution is sought via the proposed heuristic methods. The proposed approach is illustrated by a numerical example.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Bartolacci, A. Peltsverger, A. Koal, and S. Peltsverger, “Allocaton of Multiple Wireless Access Points in Mobile Networks,” in Proc. of the 42nd ACM Southeast Regional Conf., Alabama, 2004 (ACM Press, 2004), pp. 1–4.Google Scholar
  2. 2.
    E. Cela, The Qadratic Assignment Problem (Kluwer, Dordrecht, 1998).Google Scholar
  3. 3.
    C. A. C. Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems (Kluwer, Dordrecht, 2002).MATHGoogle Scholar
  4. 4.
    J. Current, H. Min, and D. Schillng, “Multiobjective Analysis of Facility Location Decisions,” Eur. J. Operat. Res. 49(3), 295–300 (1990).MATHCrossRefGoogle Scholar
  5. 5.
    A. Drexl and Y. Nikulin, “Multicritera Airport Gate Assignment and Pareto Simulated Annealing,” IIE Trans. 40(4), 385–397 (2008).CrossRefGoogle Scholar
  6. 6.
    M. R. Garey and D. S. Johnson, Computers and Intractability. The Guide to the Theory of NP-Completeness (Freeman, New York, 1979).Google Scholar
  7. 7.
    N. Jayant (Ed.), Broadband Last Mile: Access Technologies for Multimedia Communications (CRC Press/Taylor & Francis, London, 2005).Google Scholar
  8. 8.
    D. Klingman and N. V. Phillips, “Topological and Computational Aspects of Preemptive Multicriteria Military Personnel Assignment Problems,” Manag. Science 30(11), 1362–1375 (1984).CrossRefGoogle Scholar
  9. 9.
    I. Koutsopoulos and L. Tassulas, “Joint Optimal Access Point Selection and Channel Assignment in Wireless Networks,” IEEE/ACM Trans. on Networking 15, 521–532 (2007).CrossRefGoogle Scholar
  10. 10.
    H. W. Kuhn, “The Hungarian Method for the Assignment Problems,” Nav. Res Log. 2(1–2), 83–97 (1955).Google Scholar
  11. 11.
    O. I. Larichev and M. Sternin, “Man-Computer Approaches to the Multicriteria Assignment Problem,” Autom. Remote Control 59(7), 135–155 (1998).MathSciNetGoogle Scholar
  12. 12.
    S. M. Lee and M. J. Schniederjans, “A Multicriteria Assignment Problem: a Goal Programming Approach,” Interfaces 13(4), 75–81 (1983).CrossRefGoogle Scholar
  13. 13.
    M. Sh. Levin, Combinatorial Engineering of Decomposable Systems (Kluwer, Dordrecht, 1998).MATHGoogle Scholar
  14. 14.
    M. Sh. Levin, Composite Systems Decisions (Springer, New York, 2006).Google Scholar
  15. 15.
    M. Sh. Levin, “Course ’system Design: Structural Approach,” in Proc. 18th Int. Conf. Design Theory and Methodology (DTM), Philadelphia, 2006 (DETC 2006-99547, Philadelphia, 2006), pp. 475–484.Google Scholar
  16. 16.
    M. Sh. Levin, “Student Research Projects n System Design,” in Proc. 1 Int. Conf. on Computer Supported Education (CSEDU), Lisbon, Portugal, March 23–26, 2009 (INSTICC Press, 2009), pp. 291–295.Google Scholar
  17. 17.
    M. Sh. Levin, “Combinatorial Optimization in System Configuration Design,” Autom. Remote Control 70(3), 519–561 (2009).MATHCrossRefGoogle Scholar
  18. 18.
    M. Sh. Levin and A. A. Mikhailov, “Fragments of Technology of Stratification of Multitude Objects,” Preprint (ISA RAN, Moscow, 1988) [in Russian].Google Scholar
  19. 19.
    Y. C. Liang and M. H. Lo, “Multi-Objective Redundancy Allocation Optimization Using a Variable Neighborhood Search Algorithm,” J. Heuristics, 2010 (in Press).Google Scholar
  20. 20.
    M. Lopez-Ibanez, L. Paquete, and O. Stutzle, “Hybrid Population-Based Algorithms for the Bi-Objective Quadratic Assignment Problem,” J. Math. Modelling Algorithms 5(1), 111–137 (2006).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    P. Lucie, and D. Teodorovic, “Simulated Annealing for the Multi-Objective Aircrew Rostering Problem,” Transp. Res. 33(1) Part A, 19–45 (1999).Google Scholar
  22. 22.
    O. Oncan, “A Survey on the Generalized Assignment Problem,” INFOR 45(3), 123–141 (2007).MathSciNetGoogle Scholar
  23. 23.
    W. Orgyczak, A. Wierzbicki, and M. Milewski, “On Multi-Criteria Approach to Fair and Efficient Bandwidth Allocation,” Omega 36(3), 451–463 (2008).CrossRefGoogle Scholar
  24. 24.
    Quadratic Assignment and Related Problems, Ed. by P. M. Pardalos and H. Wolkowicz, (Am. Math. Soc., 1994).Google Scholar
  25. 25.
    M. I. Rubinshtein, Optimum Bunching of Interconnected Objects (Nauka, Moscow, 1989) [in Russian].Google Scholar
  26. 26.
    A. Scarelli and S. C. Narula, “A Multicritera Assignment Problem,” J. Multi-Criteria Dec. Anal. 11(2), 65–74 (2002).MATHCrossRefGoogle Scholar
  27. 27.
    D. Tuyttens, J. Teghem, Ph. Fortemps, and K. Van Nieuwenhuyze, “Performance of the MOSA Method for the Bicriteria Assignemnt Problem,” J. Heuristics 6, 295–310 (2000).MATHCrossRefGoogle Scholar
  28. 28.
    D. J. White, “A Special Multi-Objective Assignment Problem,” J. ORS 35, 759–767 (1984).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Sh. Levin
  • M. V. Petukhov

There are no affiliations available

Personalised recommendations