A data correction method in radio-occultation experiments using regional atmospheric models by the example of Arctic

  • V. I. Zakharov
  • V. E. Kunitsyn
Electrodynamics and Wave Propagation

Abstract

A method for correction of the data obtained in atmospheric studies using radio-occultation experiments is proposed. The method is based on obtaining the a priori data from regional atmospheric models, estimating the distortions inherent in radio-occultation experiments, and constructing the correction algorithms. As a result, the accuracy of reconstruction of the refractive index in real atmosphere is improved in the range of heights from 2 km to 12 km. By the example of the Arctic region, a technique for testing the suggested correction methods with the use of independent sonde measurements of atmospheric profiles is developed. Using the data obtained from the CHAMP satellite in the years 2001–2004, the suggested correction methods are tested and the statistical analysis of their efficiency is carried out. The validity limits of the suggested method are determined for different geographic conditions.

References

  1. 1.
    R. A. Phinney and D. L. Anderson, J. Geophys. Res. 73, 1819 (1968).CrossRefGoogle Scholar
  2. 2.
    V. I. Tatarskii, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okean. 4, 811 (1968).Google Scholar
  3. 3.
    E. R. Kursinski, G. A. Hajj, W. I. Bertiger, et al., Science 271(5252), 1107 (1996).CrossRefGoogle Scholar
  4. 4.
    R. Ware, M. Exner, D. Feng, and M. Gorbunov, Bull. Amer. Meteor. Soc. (BAMS) 77(1), 19 (1996).CrossRefGoogle Scholar
  5. 5.
    Earth Observation with CHAMP. Results from Three Years in Orbit, Ed. by C. Reigberg, H. Luhr, P. Schwintzer, and J. Wickert (Springer-Verlag, Berlin, 2005).Google Scholar
  6. 6.
    A. S. Gurvich and S. V. Sokolovskii, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okean. 21, 12 (1988).Google Scholar
  7. 7.
    M. E. Gorbunov, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. Okean. 30, 776 (1994).Google Scholar
  8. 8.
    V. I. Zakharov and V. E. Kunitsyn, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 4, 45 (1998).Google Scholar
  9. 9.
    V. I. Zakharov and V. E. Kunitsyn, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 4, 46 (1999).Google Scholar
  10. 10.
    V. E. Kunitsyn, V. I. Zakharov, N. A. Berbeneva, and O. G. Razinkov, Phys. Chem. Earth (A) 26(3), 131 (2001).CrossRefGoogle Scholar
  11. 11.
    V. Kunitsyn, V. Zakharov, K. Dethloff, et al., Phys. Chem. Earth (A/B/C) 29(2–3), 277 (2004).CrossRefGoogle Scholar
  12. 12.
    V. I. Zakharov and V. E. Kunitsyn, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 4, 69 (2006).Google Scholar
  13. 13.
    P. I. Palmer, J. J. Barnett, J. R. Eyre, and S. B. Healy, J. Geophys. Res. 105(D13), 17513 (2000).CrossRefGoogle Scholar
  14. 14.
    X. Zou, F. Vandenberghe, B. Wang, et al., J. Geophys. Res. 104(D18), 22301 (1999).CrossRefGoogle Scholar
  15. 15.
    M. E. Gorbunov, A. S. Gurvich, and L. Kornbluech, Radio Sci. 35, 1025 (2000).CrossRefGoogle Scholar
  16. 16.
    V. V. Vorob’ev and T. G. Krasil’nikova, Izv. Akad. Nauk SSSR, Ser. Fiz. 29, 626 (1993).Google Scholar
  17. 17.
    J. H. Christensen, O. B. Christensen, P. Lopez, E. et al. The HIRHAM4 Regional Atmospheric Climate Model: Sci. Rep. no. 96-4 (Danish Meteorological Inst., Copenhagen, 1996).Google Scholar
  18. 18.
    A. Rinke, K. Dethloff, A. Spekat, et al., Polar Res. 18(2), 143 (1999).CrossRefGoogle Scholar
  19. 19.
    A. Rinke, A. H. Lynch, and K. Dethloff, J. Geophys. Res. 105(D24), 29669 (2000).CrossRefGoogle Scholar
  20. 20.
  21. 21.
    V. I. Zakharov, V. E. Kunitsyn, A. S. Zienko, et al., Elektromagn. Volny Elektron. Sist. 12(8), 41 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. I. Zakharov
  • V. E. Kunitsyn

There are no affiliations available

Personalised recommendations