Modulation SQUID electronics working with high-Tc SQUIDs in open space

  • E. V. Burmistrov
  • V. Yu. Slobodchikov
  • V. V. Khanin
  • Yu. V. Maslennikov
  • O. V. Snigirev
New Radio Systems and Elements

Abstract

SQUID electronics optimized for operation in unshielded space with dc high-Tc superconducting quantum interference devices (HTS SQUIDs) are developed, manufactured, and studied. The dynamic characteristics of the SQUID electronics are studied with two magnetic-field sensors based on the HTS SQUIDs: a conventional SQUID sensor with a resolution of 100 fT/Hz1/2 and a supersensitive SQUID sensor with a resolution of 15 fT/Hz1/2 at frequencies exceeding 10 Hz and a resolution of 30 fT/Hz1/2 at a frequency of 1 Hz. Stable operation of the magnetometric channel is demonstrated with both SQUID sensors under urban conditions. On the basis of a complex programmable logic device (CPLD), an ac bias can be realized in the SQUID and the modulation signal can be compensated in the feedback, bias-current, and desired-signal circuits. Such a compensation system is the most appropriate and versatile means of providing stable operation of the magnetometric channel in the presence of the SQUID ac bias, regardless of the type of high-temperature sensor and the configuration of the input contacts in the measurement probe.

PACS numbers

85.25.Dq 74.72.-h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Application of Superconductivity, Ed. by H. Weinstock (Kluwer, the Netherlands, 1996).Google Scholar
  2. 2.
    M. I. Faley, U. Poppe, K. Urban, et al., J. Phys. Conf. Ser. 43, 1199 (2006).CrossRefGoogle Scholar
  3. 3.
    R. H. Koch, J. R. Rozen, J. R. Sun, and W. J. Gallagher, Appl. Phys. Lett. 63, 403 (1993).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, G. Panaitov, S. G. Wang, et al., Appl. Phys. Lett. 76, 906 (2000).CrossRefGoogle Scholar
  5. 5.
    R. Fenici, R. Brisinda, and R. Meloni, Expert Rev. Mol. Diagn. 5, 291 (2005).CrossRefGoogle Scholar
  6. 6.
    D. Drung, Supercond. Sci. Technol. 16, 1320 (2003).CrossRefGoogle Scholar
  7. 7.
    J. Clarke, W. M. Goubau, and M. B. Ketchen, J. Low Temp. Phys. 25(1/2), 99 (1976).CrossRefGoogle Scholar
  8. 8.
    B. Savo, F. C. Wellstood, and J. Clarke, Appl. Phys. Lett. 50, 1757 (1987).CrossRefGoogle Scholar
  9. 9.
    D. Koelle, R. Kleiner, F. Ludwig, et al., Rev. Mod. Phys. 71, 631 (1999).CrossRefGoogle Scholar
  10. 10.
    O. Dossel, B. David, M. Fuchs, et al., IEEE Trans. Magn. 27, 2797 (1991).CrossRefGoogle Scholar
  11. 11.
    F. Ludwig, A. B. M. Jansman, D. Drung, et al., IEEE Trans. Appl. Supercond. 11, 1315 (2001).CrossRefGoogle Scholar
  12. 12.
    S. H. Liao, S. C. Hsu, C. C. Lin, et al., Supercond. Sci. Technol. 16, 1426 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. V. Burmistrov
  • V. Yu. Slobodchikov
  • V. V. Khanin
  • Yu. V. Maslennikov
  • O. V. Snigirev

There are no affiliations available

Personalised recommendations