Analysis of the possibility to amplify an RF signal with a superconducting quantum interference filter

  • A. K. Kalabukhov
  • M. L. Chukharkin
  • A. A. Deleniv
  • D. Winkler
  • I. A. Volkov
  • O. V. Snigirev
Physical Processes in Electron Devices

Abstract

A laboratory prototype RF amplifier for the frequency range 1–10 GHz is designed, created, and tested. The device is based on high-temperature superconducting quantum interference filters (SQUIFs) and the technology of bicrystalline substrates. The main characteristics of the prototype SQUIF amplifier are numerically simulated and measured.

PACS numbers

85.25.Dq 84.30.Le 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mück, J. B. Kycia, and J. Clarke, Appl. Phys. Lett. 78, 967 (2001).CrossRefGoogle Scholar
  2. 2.
    R. F. Bradley, Nucl. Phys. A. 72(1), 137 (1999).Google Scholar
  3. 3.
    I. Lopes-Fernandez, J. D. G. Puyol, O. J. Homan, and A. B. Cancio, Microwave Guid. Wave Lett. 9(10), 413 (1999).CrossRefGoogle Scholar
  4. 4.
    G. V. Prokopenko, S. V. Shitov, I. L. Lapitskaya, et al., IEEE Trans. Appl. Supercond. 13, 1042 (2003).CrossRefGoogle Scholar
  5. 5.
    A. S. Kalabukhov, M. A. Tarasov, E. A. Stepantsov, et al., Physica C 368(1–4), 171 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Mück, Physica A 368(1–4), 141 (2002).Google Scholar
  7. 7.
    G. V. Prokopenko, S. V. Shitov, I. V. Borisenko, and J. Mygand, IEEE Trans. Appl. Supercond. 13, 1046 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Mück, C. Welzel, and J. Clarke, Appl. Phys. Lett. 82, 3266 (2003).CrossRefGoogle Scholar
  9. 9.
    E. Stepantsov, M. Tarasov, A. Kalabukhov, et al., J. Appl. Phys. 96, 3357 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Oppenlaender, C. Haeussler, A. Friesch, et al., IEEE Trans. Appl. Supercond. 15, 936 (2005).CrossRefGoogle Scholar
  11. 11.
    P. Caputo, J. Oppenländer, C. Häussler, et al., Appl. Phys. Lett. 85, 1389 (2004).CrossRefGoogle Scholar
  12. 12.
    J. Oppenlaender, C. Haeussler, T. Träeuble, and N. Schopohl, Physica C 368(1–4), 119 (2002).CrossRefGoogle Scholar
  13. 13.
    V. Schultze, R. Ijsselsteijn, R. Boucher, et al., Supercond. Sci. Technol. 16, 1356 (2003).CrossRefGoogle Scholar
  14. 14.
    C. Hilbert and J. Clarke, J. Low Temp. Phys. 61(3–4), 263 (1985).CrossRefGoogle Scholar
  15. 15.
    C. Hilbert and J. Clarke, J. Low Temp. Phys. 61(3–4), 237 (1985).CrossRefGoogle Scholar
  16. 16.
    P. Falferi, R. Mezzena, S. Vitale, and M. Cherdonio, Appl. Phys. Lett. 71, 956 (1997).CrossRefGoogle Scholar
  17. 17.
    K. K. Likharev and B. T. Ul’rikh, Systems with Josephson Contacts. Principles of Theory (Mosk. Gos. Univ., Moscow, 1978), p. 65 [in Russian].Google Scholar
  18. 18.
  19. 19.
    M. B. Ketchen, W. J. Gallagher, and A. W. Kleisasser, in SQUID’85: Superconducting Quantum Interference Devices and their Applications, Ed. by H.-D. Hahlbohm and H. Lubbig (Walter de Gruyter & Co, Berlin, 1985), p. 856.Google Scholar
  20. 20.
    P. A. Rosental, M. R. Beasley, K. Char, et al., Appl. Phys. Lett. 59, 3482 (1991).CrossRefGoogle Scholar
  21. 21.
    R. Gross, P. Chaudhari, M. Kawasaki, and A. Gupta, Phys. Rev. B 42, 10735 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. K. Kalabukhov
  • M. L. Chukharkin
  • A. A. Deleniv
  • D. Winkler
  • I. A. Volkov
  • O. V. Snigirev

There are no affiliations available

Personalised recommendations