Advertisement

Journal of Communications Technology and Electronics

, Volume 52, Issue 9, pp 1037–1048 | Cite as

Propagation of elastic waves in phononic crystals

  • I. V. Lisenkov
  • S. A. Nikitov
  • R. S. Popov
  • Chul Koo Kim
Radio Phenomena in Solids and Plasma

Abstract

Propagation of elastic waves in a system of cylindrical channels embedded in a homogeneous isotropic elastic medium (a phononic crystal) is investigated. A multipole method is proposed for simulation of wave propagation in such structures. The dispersion characteristics of wave propagation in systems consisting of three, six, and seven cylindrical channels are calculated. The results are compared to the data corresponding to wave propagation along a single channel. The computational efficiency of the method and its applicability to simulation of the propagation of elastic waves in large phononic crystals are assessed.

PACS numbers

43.35.+d 42.70.Qs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: Road from Theory to Practice (Kluwer Acad. Publ., Boston, 2002).Google Scholar
  2. 2.
    M. Sigals, M. S. Kushwaha, E. N. Economou, et al., Ztsch. Kristallogr. 220, 765 (2005).CrossRefGoogle Scholar
  3. 3.
    S. A. Nikitov, Yu. A. Filimonov, and Ph. Tailhades, Adv. Sci. Technol. 45, 1355 (2006).Google Scholar
  4. 4.
    S. A. Nikitov, M. V. Ryabko, and Yu. K. Chamorovskii, Nano-Mikrosistem. Tekhnika, No. 5, 33 (2005).Google Scholar
  5. 5.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976).Google Scholar
  6. 6.
    Tanaka Yukihiro and Tamura Shin-Ichiro, Phys. Rev. B 60, 294 (1999).Google Scholar
  7. 7.
    Feng Liang, Liu Xiao-Ping, Lu Ming-Hui, et al., Phys. Rev. Lett. 96, 014301-1 (2006).Google Scholar
  8. 8.
    V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).Google Scholar
  9. 9.
    S. Kushwaha, P. Halevi, G. Martinez, Phys. Rev. B 49, 2313 (1994).CrossRefGoogle Scholar
  10. 10.
    C. G. Poulton, A. B. Movchan, and R. C. McPhedran, Proc. R. Soc. London, Ser. B 456, 2543 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    P. F. Hsieh, T. T. Wu, and J. H. Sun, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 148 (2006).CrossRefGoogle Scholar
  12. 12.
    P. Langlet, A. C. Hladky-Hennion, and J. N. Decarpigny, J. Acoust. Soc. Am. 98, 2792 (1995).CrossRefGoogle Scholar
  13. 13.
    L. M. Brekhovskikh and O. A. Godin, Acoustics of Stratified Media (Nauka, Moscow, 1989) [in Russian].Google Scholar
  14. 14.
    R. N. Thurston, J. Accoust. Soc. Am. 64, 1 (1978).CrossRefzbMATHGoogle Scholar
  15. 15.
    G. Strike, Geophysics Prospecting 7, 273 (1959).CrossRefGoogle Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, New York, 1986) [in Russian].Google Scholar
  17. 17.
    T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al., J. Opt. Soc. Am. B: Opt. Phys. 19, 2322 (2002).CrossRefGoogle Scholar
  18. 18.
    V. K. Romanko, Course of Differential Equations and Calculus of Variations (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • I. V. Lisenkov
    • 1
  • S. A. Nikitov
    • 1
  • R. S. Popov
    • 1
  • Chul Koo Kim
    • 2
  1. 1.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  2. 2.Department of PhysicsYonsei UniversitySeoulKorea

Personalised recommendations