Advertisement

Statistical properties of the instantaneous phase of noisy periodic and chaotic self-sustained oscillations

  • T. E. Vadivasova
  • V. S. Anishchenko
  • G. A. Okrokvertskhov
  • A. S. Zakharova
Dynamic Chaos in Radiophysics and Electronics

Abstract

The statistics of the instantaneous phase of oscillations in dynamic systems with a noisy limit cycle is compared to the statistics of the instantaneous phase of oscillations in dynamic systems with a spiral chaotic attractor. Simulation of the phase dynamics of chaotic self-sustained oscillations by a Wiener process is considered. The results provided by various methods of determination of the instantaneous phase are analyzed.

PACS numbers

05.45.-a 05.45.Xt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Arneodo, P. Collet, and C. Tresser, Commun. Math. Phys. 79, 573 (1981).CrossRefGoogle Scholar
  2. 2.
    V. S. Anishchenko, Complex Oscillations in Simple Systems (Nauka, Moscow, 1990).Google Scholar
  3. 3.
    A. Pikovsky, M. Rosenblun, and J. Kurths, Synchronization. A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001).Google Scholar
  4. 4.
    V. S. Anishchenko, T. E. Vadivasova, D. E. Postnov, and M. A. Safonova, Int. J. Bifurcation Chaos 2, 633 (1992).CrossRefMathSciNetGoogle Scholar
  5. 5.
    M. G. Rosenblun, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).CrossRefGoogle Scholar
  6. 6.
    V. S. Anishchenko, V. V. Astakhov, A. B. Neiman, et al., Nonlinear Dynamics of Chaotic and Stochastic Systems (Springer, Berlin, 2002).Google Scholar
  7. 7.
    J. D. Farmer, Phys. Rev. Lett. 47, 179 (1981).CrossRefGoogle Scholar
  8. 8.
    A. S. Pikovsky, Radiotekh. Elektron. (Moscow) 30, 1970 (1985).Google Scholar
  9. 9.
    V. S. Anishchenko, T. E. Vadivasova, A. S. Kopeikin, et al., Phys. Rev. Lett. 87, 4101 (2001).CrossRefGoogle Scholar
  10. 10.
    V. S. Anishchenko, T. E. Vadivasova, J. Kurths, et al., Physica A 325, 199 (2003).CrossRefMathSciNetGoogle Scholar
  11. 11.
    V. S. Anishchenko, T. E. Vadivasova, G. A. Okrokvertskhov, and G. I. Strelkova, Radiotekh. Elektron. (Moscow) 48, 824 (2003) [J. Commun. Technol. Electron. 48, 750 (2003)].Google Scholar
  12. 12.
    V. S. Anishchenko, T. E. Vadivasova, G. A. Okrokvertskhov, and G. I. Strelkova, Phys. Rev. E 69, 036215 (2004).Google Scholar
  13. 13.
    V. S. Anishchenko, T. E. Vadivasova, A. S. Kopeikin, et al., Phys. Rev. E 65, 036206 (2002).Google Scholar
  14. 14.
    R. L. Stratonovich, Selected Problems of Fluctuation Theory in Radio Engineering (Sovetskoe Radio, Moscow, 1961).Google Scholar
  15. 15.
    A. N. Malakhov, Fluctuations in Self-Sustained Oscillation Systems (Nauka, Moscow, 1968).Google Scholar
  16. 16.
    S. M. Rytov, Introduction to Statistical Radio Physics (Nauka, Moscow, 1966).Google Scholar
  17. 17.
    O. E. Rössler, Phys. Lett. A 57, 397 (1976).CrossRefGoogle Scholar
  18. 18.
    T. E. Vadivasova and V. S. Anishchenko, Radiotekh. Elektron. (Moscow) 49, 77 (2004) [J. Commun. Technol. Electron. 49, 69 (2004)].Google Scholar
  19. 19.
    G. V. Osipov, B. Hu, C. Zhou, et al., Phys. Rev. Lett. 91, 024101 (2003).Google Scholar
  20. 20.
    V. S. Anishchenko, T. E. Vadivasova, Radiotekh. Elektron. (Moscow) 47, 133 (2002) [J. Commun. Technol. Electron. 47, 117 (2002)].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • T. E. Vadivasova
  • V. S. Anishchenko
  • G. A. Okrokvertskhov
  • A. S. Zakharova

There are no affiliations available

Personalised recommendations