Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1252–1257 | Cite as

Mass Spectrometry of Glutamic Acid and Glutamine in the Gas Phase

  • A. N. ZavilopuloEmail author
  • A. I. Bulhakova
Article
  • 4 Downloads

Abstract

We report on the method and results of a mass-spectrometric investigation of the yield of positive ions formed as a result of the dissociative ionization of glutamic acid and glutamine by electron impact in the gas phase. The measurements were performed at various temperatures using a monopole mass spectrometer of MX-7304A type in a range of ion masses within 10–150 Da. Peculiarities of the formation of molecular fragment ions of glutamic acid and glutamine by electron impact were studied in detail and the dynamics of fragment ion yield was measured at various temperatures of evaporation of the initial substances within 310–430 K.

Keywords:

mass spectrum amino acid dissociative ionization fragment ion. 

Notes

ACKNOWLEDGMENTS

We authors are grateful to E.Yu. Remeta for fruitful discussion of the results.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    H. D. Jakubke und H. Jeschkeit, Aminosäuren, Peptide, Proteine (Verlag Chemie, Weinheim, Deerfield Beach, FL, Basel, 1982).Google Scholar
  2. 2.
  3. 3.
    M. J. Christopher, M. Bernier, E. Carson, K. E. Colyer, R. Metz, A. Pawlow, E. D. Wischow, I. Webb, E. J. Andriole, and J. C. Poutsm, Int. J. Mass Spectrosc. 267, 54 (2007).CrossRefGoogle Scholar
  4. 4.
    J. Bonner, Y. A. Lyon, C. Nellessen, and R. R. Julian, J. Am. Chem. Soc. 139, 10286 (2017).  https://doi.org/10.1021/jacs.7b02428 CrossRefGoogle Scholar
  5. 5.
    O. B. Shpenik, A. M. Zavilopulo, and O. V. Pilipchinets, Dopov. Nac. Akad. Nauk Ukr., No. 5, 44 (2018).  https://doi.org/10.15407/dopovidi2018.04.044
  6. 6.
    A. N. Zavilopulo, O. B. Shpenik, A. N. Mylymko, and V. Yu. Shpenik, Int. J. Mass Spectrosc. 441, 1 (2019).  https://doi.org/10.1016/j.ijms.2019.03.008 CrossRefGoogle Scholar
  7. 7.
    A. Ostroverkh, A. Zavilopulo, and O. Shpenik, Eur. Phys. J. D 73, 38 (2019).  https://doi.org/10.1140/epjd/e2019-90532-3 ADSCrossRefGoogle Scholar
  8. 8.
    A. N. Zavilopulo, O. B. Shpenik, and O. V. Pilipchinets, Tech. Phys. 64, 8 (2019).CrossRefGoogle Scholar
  9. 9.
    P. Papp, P. Shchukin, J. Kočíšek, and Š. Matejčík, J. Chem. Phys. 137, 105101 (2012).  https://doi.org/10.1063/1.4749244 ADSCrossRefGoogle Scholar
  10. 10.
    NIST Standard Reference Database. http://www.webbook.nist.gov.Google Scholar
  11. 11.
    Spectral Database for Organic Compounds SDBS. https://sdbs.db.aist.go.jp.Google Scholar
  12. 12.
    M. I. Migovich and V. A. Kel’man, Opt. Spectrosc. 121, 62 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    T. Fiegele, G. Hanel, I. Torres, M. Lezius, and T. D. Märk, J. Phys. B 33, 4263 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Electron Physics, National Academy of Sciences of UkraineUzhgorodUkraine

Personalised recommendations