Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1226–1229 | Cite as

Quantum Yield of a Silicon XUV Avalanche Photodiode in the 320–1100 nm Wavelength Range

  • V. V. ZabrodskiiEmail author
  • P. N. Aruev
  • B. Ya. Ber
  • D. Yu. Kazantsev
  • A. N. Gorokhov
  • A. V. Nikolaev
  • V. V. Filimonov
  • M. Z. Shvarts
  • E. V. Sherstnev
Article

Abstract

Quantum photoresponse yield of a silicon XUV avalanche photodiode prototype with 1.5‑mm-diameter active region has been studied in the 320–1100 nm wavelength range. It is established that the proposed avalanche photodiode has the external quantum efficiency above 20 electron/photon in the 580–1000 nm range at a reverse bias voltage of 485 V.

Keywords:

avalanche photodiode XUV range silicon dark current. 

Notes

ACKNOWLEDGMENTS

This work was carried out using instrumentation of the Center of Collective Use Materials Science and Diagnostics in Advanced Technologies at the Ioffe Physical Technical Institute and supported by the Ministry of Education and Science of the Russian Federation. We are grateful to our colleagues from the Ioffe Physical Technical Institute, in particular, to N.V. Zabrodskaya, M.S. Lazeeva, M.V. Drozdova, and V.I. Marshalova for their help in preparing photodiode structures and to M.E. Levinshtein for fruitful discussion of the results.

FUNDING

P.N. Aruev gratefully acknowledges support from the Russian Foundation for Basic Research, project no. 16-29-13009-ofi-m.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    A. G. Chynoweth, in Semiconductors and Semimetals (Academic, New York, 1968), Vol. 4, Chap. 4.Google Scholar
  2. 2.
    M. Diepold, L. M. P. Fernandes, J. Machado, P. Amaro, M. Abdou-Ahmed, F. D. Amaro, A. Antognini, F. Biraben, T.-L. Chen, D. S. Covita, A. J. Dax, B. Franke, S. Galtier, A. L. Gouvea, J. Götzfried, et al., Rev. Sci. Instrum. 86, 053102 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    S. Kishimoto, H. Yonemura, S. Adachi, S. Shimazaki, M. Ikeno, M. Saito, T. Taniguchi, and M. Tanaka, Nucl. Instrum. Methods Phys. Res., Sect. A 731, 53 (2013).Google Scholar
  4. 4.
    Handbooks of Optical Constants of Solids, Ed. by E. D. Palik (Academic, New York, 1998).Google Scholar
  5. 5.
    R. Korde, J. S. Cable, and L. R. Canfield, IEEE Trans. Nucl. Sci. 40, 1655 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    V. V. Zabrodskii, V. P. Belik, P. N. Aruev, B. Ya. Ber, S. V. Bobashev, M. V. Petrenko, and V. L. Sukhanov, Tech. Phys. Lett. 38, 812 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    F. Scholze, R. Klein, and R. Müller, Metrologia 43, S6 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    S. Kolodinski, J. H. Werner, T. Wittchen, and H. J. Queisser, Appl. Phys. Lett. 63, 2405 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. A. Gol’dberg, V. V. Zabrodskii, O. I. Obolenskii, T. V. Petelina, and V. L. Sukhanov, Semiconductors 33, 343 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Zabrodskii
    • 1
    Email author
  • P. N. Aruev
    • 1
  • B. Ya. Ber
    • 1
  • D. Yu. Kazantsev
    • 1
  • A. N. Gorokhov
    • 1
  • A. V. Nikolaev
    • 1
  • V. V. Filimonov
    • 1
  • M. Z. Shvarts
    • 1
  • E. V. Sherstnev
    • 1
  1. 1.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations