Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1241–1244 | Cite as

Combustion Limits of Foamed Emulsions with High Water Content

  • I. S. YakovenkoEmail author
  • A. D. Kiverin
  • A. M. Korshunov
  • B. V. Kichatov
Article
  • 3 Downloads

Abstract

We consider a new promising approach to the combustion of water-saturated hydrocarbon fuels in the form of foamed emulsions, stable combustion of which can sometimes be maintained at a water content above 90% mass %. Theoretical analysis and numerical simulations demonstrated the basic physical mechanism determining these broad combustibility limits, which consists in the natural spatial separation of the zones of fuel combustion and water evaporation. During combustion, the foam predominantly breaks up into emulsion drops. Nonstationary regimes of combustion are determined by the foam structure. The obtained data define applicability of the proposed concept of combustion of water-saturated foamed hydrocarbon emulsions.

Keywords:

combustible foamed emulsions water-saturated hydrocarbon fuel flame propagation mechanisms numerical simulation. 

Notes

FUNDING

This work was supported by the Russian Science Foundation, project no. 17-19-01392.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    M. Huo, S. Lin, H. Liu, and C. F. Lee, Fuel 123, 218 (2014).  https://doi.org/10.1016/j.fuel.2013.12.035 CrossRefGoogle Scholar
  2. 2.
    M. A. Kurgankina, G. S. Nyashina, and P. A. Strizhak, Appl. Therm. Eng. 147, 998 (2019).  https://doi.org/10.1016/j.applthermaleng.2018.10.133 CrossRefGoogle Scholar
  3. 3.
    D. Dave and A. E. Ghaly, Am. J. Environ. Sci. 7, 423 (2011).  https://doi.org/10.3844/ajessp.2011.423.440 CrossRefGoogle Scholar
  4. 4.
    A. M. A. Attia and A. R. Kulchitskiy, Fuel 116, 703 (2014).  https://doi.org/10.1016/j.fuel.2013.08.057 CrossRefGoogle Scholar
  5. 5.
    J. Richard, J. P. Garo, J. M. Souil, J. P. Vantelon, and V. G. Knorre, Fire Safety J.38, 569 (2003).  https://doi.org/10.1016/S0379-7112(03)00012-2 CrossRefGoogle Scholar
  6. 6.
    I. Glassman, R. A. Yetter, and N. G. Glumac, Combustion (Academic, London, 2014).Google Scholar
  7. 7.
    B. Kichatov, A. Korshunov, and A. Kiverin, Proc. Combust. Inst. 37, 3417 (2019).  https://doi.org/10.1016/j.proci.2018.08.007 CrossRefGoogle Scholar
  8. 8.
    N. D. Denkov, Langmuir 20, 9463 (2004).  https://doi.org/10.1021/la049676o CrossRefGoogle Scholar
  9. 9.
    K. N. Volkov and V. N. Emel’yanov, Particle Gas Flows (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  10. 10.
    S. K. Aggarwal, Prog. Energy Combust. Sci. 45, 79 (2014).  https://doi.org/10.1016/j.pecs.2014.05.002 CrossRefGoogle Scholar
  11. 11.
    D. N. Pope and G. Gogos, Combust. Flame 142, 89 (2005).  https://doi.org/10.1016/j.combustflame.2005.02.010 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. S. Yakovenko
    • 1
    Email author
  • A. D. Kiverin
    • 1
  • A. M. Korshunov
    • 2
  • B. V. Kichatov
    • 1
    • 2
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.P.N. Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations