Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1266–1269 | Cite as

Dynamics of Radiation from Nanosecond Surface Sliding Discharge in Airflow with Shock Waves

  • A. Yu. KuznetsovEmail author
  • I. V. Mursenkova
  • P. Yu. Ulanov
Article
  • 4 Downloads

Abstract

Spatio-temporal distributions of radiation from pulsed sliding surface discharge of ~300-ns duration in quiescent air at pressures within 2–200 Torr and in the presence of shock waves in supersonic flow with Mach numbers M = 2.8–3.3 have been experimentally studied. The dynamics of radiation from discharge was analyzed based on processing of the streak images and nine-frame images of discharge glow intensity, emission spectra, and discharge current kinetics. It is established that variation of the radiation intensity from discharge interacting with shock waves is correlated with a model temporal dependence of the population of C3Πu states of nitrogen during shock compression of the discharge plasma region.

Keywords:

sliding surface discharge emission dynamics decay time electro-optic camera plane shock wave. 

Notes

FUNDING

This study was supported in part by the Russian Foundation for Basic Research (project no. 19-08-00661) and the “Program of Development of Moscow State University to 2020.”

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    S. V. Leonov, I. V. Adamovich, and V. R. Soloviev, Plasma Sources Sci. Technol. 25, 063001 (2016).  https://doi.org/10.1088/0963-0252/25/6/063001 ADSCrossRefGoogle Scholar
  2. 2.
    V. V. Golub, A. S. Saveliev, V. A. Sechenov, E. E. Son, and D. V. Tereshonok, High Temp. 48, 903 (2010).CrossRefGoogle Scholar
  3. 3.
    I. V. Mursenkova, I. A. Znamenskaya, and A. E. Lutsky, J. Phys. D: Appl. Phys. 51, 105201 (2018).  https://doi.org/10.1088/1361-6463/aaa838 ADSCrossRefGoogle Scholar
  4. 4.
    I. A. Doroshchenko, I. A. Znamenskaya, A. Yu. Kuznetsov, I. V. Mursenkova, and N. N. Sysoev, Tech. Phys. 63, 662 (2018).CrossRefGoogle Scholar
  5. 5.
    Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1987).Google Scholar
  6. 6.
    E. I. Mintoussov, S. J. Pendleton, F. G. Gerbault, N. A. Popov, and S. M. Starikovskaia, J. Phys. D: Appl. Phys. 44, 285202 (2011).  https://doi.org/10.1088/0022-3727/44/28/285202 ADSCrossRefGoogle Scholar
  7. 7.
    S. Nagaraja, V. Yang, and I. Adamovich, J. Phys. D: Appl. Phys. 46, 155205 (2013).  https://doi.org/10.1088/0022-3727/46/15/155205 ADSCrossRefGoogle Scholar
  8. 8.
    A. Yu. Kuznetsov and I. V. Mursenkova, Prikl. Fiz., No. 5, 16 (2016).Google Scholar
  9. 9.
    Yu. A. Lebedev and V. A. Shakhatov, Plasma Phys. Rep. 32, 56 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    I. V. Mursenkova, A. Yu. Kuznetsov, and A. S. Sazonov, in Proceedings of the 12th International Conference on Applied Mathematics and Mechanics in the Aerospace Industry (NPNJ’2018) (MAI, Moscow, 2018), p. 278.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. Yu. Kuznetsov
    • 1
    Email author
  • I. V. Mursenkova
    • 1
  • P. Yu. Ulanov
    • 1
  1. 1.Faculty of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations