Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1194–1196 | Cite as

A Numerical and Experimental Study of Bubble Deformation on the Surface in a Shear Flow of Viscous Liquid

  • Yu. A. PityukEmail author
  • S. P. Sametov
  • A. I. Mullayanov
  • O. A. Abramova
Article

Abstract

An experimental and numerical approach for studying the bubble deformation on the surface in the shear flow of viscous liquid is developed. The numerical approach is based on the boundary element method for the Stokes flows. The methods of optical microscopy and high-speed recording are applied for the experimental investigation of the bubble deformation. The dynamics of the variation in the receding and advancing contact angles is studied in dependence on the intensity of the shear flow of viscous liquid. A qualitative and quantitative agreement between the numerical modeling and experimental results for various capillary numbers is obtained.

Keywords:

bubble dynamics contact angle boundary element method high-speed recording optical microscopy. 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 18-38-20102.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    V. Michaud, Transport Porous Media 115, 581 (2016).  https://doi.org/10.1007/s11242-016-0629-7 MathSciNetCrossRefGoogle Scholar
  2. 2.
    P. E. Frommhold, R. Mettin, F. Holsteyns, and A. Lippert, in On-line Proceedings of the International German Annual Conference on Acoustics DAGA,2012, p. 455.Google Scholar
  3. 3.
    F. Prabowo and C.-D. Ohl, Ultrason. Sonochem. 18, 431 (2011).  https://doi.org/10.1016/j.ultsonch.2010.07.013 CrossRefGoogle Scholar
  4. 4.
    O. A. Abramova, I. Sh. Akhatov, N. A. Gumerov, Yu. A. Pityuk, and S. P. Sametov, Fluid Dyn. 53, 337 (2018).  https://doi.org/10.7868/S0568528118030015 MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. A. Ervin and G. Tryggvason, J. Fluids Eng. 119, 443 (1997).  https://doi.org/10.1115/1.2819153 CrossRefGoogle Scholar
  6. 6.
    S. Dabiri, W. A. Sirignano, and D. D. Joseph, J. Fluid Mech. 651, 93 (2010).  https://doi.org/10.1017/S0022112009994058 ADSCrossRefGoogle Scholar
  7. 7.
    C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge Univ. Press, Cambridge, 1992).  https://doi.org/10.1017/CBO9780511624124
  8. 8.
    Y. A. Itkulova, O. A. Abramova, and N. A. Gumerov, in Proceedings of the ASME 2013, International Mechanical Engineering Congress and Exposition (Am. Soc. Mech. Eng., 2013), p. V07BT08A010.  https://doi.org/10.1115/IMECE2013-63200
  9. 9.
    Yu. A. Pityuk, N. A. Gumerov, O. A. Abramova, and I. Sh. Akhatov, Math. Models Comput. Simul. 10, 209 (2018).MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. A. Gumerov, I. S. Akhatov, C. D. Ohl, S. P. Sametov, M. V. Khazimullin, and S. R. Gonzalez-Avila, Appl. Phys. Lett. 108, 134102 (2016).  https://doi.org/10.1063/1.4944893 ADSCrossRefGoogle Scholar
  11. 11.
    B. Kronberg, K. Holmberg, and B. Lindman, Surface Chemistry of Surfactants and Polymers (Wiley, 2014).  https://doi.org/10.1002/9781118695968 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. A. Pityuk
    • 1
    Email author
  • S. P. Sametov
    • 1
  • A. I. Mullayanov
    • 1
  • O. A. Abramova
    • 1
  1. 1.Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State UniversityUfaRussia

Personalised recommendations