Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1178–1181 | Cite as

The Use of Microdisk Lasers Based on InAs/InGaAs Quantum Dots in Biodetection

  • M. V. FetisovaEmail author
  • A. A. Kornev
  • A. S. Bukatin
  • N. A. Filatov
  • I. E. Eliseev
  • N. V. Kryzhanovskaya
  • I. V. Reduto
  • E. I. Moiseev
  • M. V. Maximov
  • A. E. Zhukov
Article
  • 28 Downloads

Abstract

It is demonstrated that microdisk lasers about 10 μm in diameter with an active region based on InAs/InGaAs quantum dots synthesized on GaAs substrates can be used for biodetection. Chimeric monoclonal antibodies against the CD20 protein that are covalently attached to the surface of microdisk lasers operating in an aqueous medium under optical pumping and room temperature were used as detectable objects. It is shown that the addition of secondary antibodies leads to an increase in the threshold power of laser generation, as well as to an increase in the full width at half maximum (FWHM) of the resonance laser line.

Keywords:

biosensor semiconductor laser microdisk laser quantum dots photoluminescence. 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research (18-02-00895) and Program of Fundamental Research of the Presidium of the Russian Academy of Sciences.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    M. L. Gorodetskii, Optical Microcavities with Giant Q‑Factor (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    L. He, S. Özdemir, and L. Yang, Laser Photon. Rev. 7, 60 (2013).  https://doi.org/10.1002/lpor.201100032 ADSCrossRefGoogle Scholar
  3. 3.
    X. F. Jiang, C. L. Zou, L. Wang, Q. Gong, and Y. F. Xiao, Laser Photon. Rev. 10, 40 (2016).  https://doi.org/10.1002/lpor.201500163 ADSCrossRefGoogle Scholar
  4. 4.
    K. Y. Yang, Y. O. Dong, S. H. Lee, Q. F. Yang, X. Yi, B. Shen, H. Wang, and K. Vahala, Nat. Photon. 12, 297 (2018).  https://doi.org/10.1038/s41566-018-0132-5 ADSCrossRefGoogle Scholar
  5. 5.
    J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, Nat. Photon. 4, 37 (2010).  https://doi.org/10.1038/nphoton.2009.259 ADSCrossRefGoogle Scholar
  6. 6.
    M. R. Foreman, J. D. Swaim, and F. Vollmer, Adv. Opt. Photon. 7, 168 (2015).  https://doi.org/10.1364/AOP.7.000168 CrossRefGoogle Scholar
  7. 7.
    X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, Anal. Chim. Acta 620, 8 (2008).  https://doi.org/10.1016/j.aca.2008.05.022 CrossRefGoogle Scholar
  8. 8.
    J. Yang and L. J. Guo, IEEE J. Sel. Top. Quant. Electron. 12, 143 (2006).  https://doi.org/10.1109/JSTQE.2005.862953 ADSCrossRefGoogle Scholar
  9. 9.
    Q. Lu, X. Chen, L. Fu, S. Xie, and X. Wu, Nanomaterials 9, 479 (2019).  https://doi.org/10.3390/nano9030479 CrossRefGoogle Scholar
  10. 10.
    T. J. Kippenberg and K. J. Vahala, Opt. Express 15, 17172 (2007).  https://doi.org/10.1364/OE.15.017172 ADSCrossRefGoogle Scholar
  11. 11.
    C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Science (Washington, DC, U. S.) 338, 1609 (2012).  https://doi.org/10.1126/science.1228370 ADSCrossRefGoogle Scholar
  12. 12.
    D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, Nature (London, U.K.) 421, 925 (2003).  https://doi.org/10.1038/nature01371 ADSCrossRefGoogle Scholar
  13. 13.
    X. Jiang, L. Shao, S. X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Loncar, L. Yang, and Y. F. Xiao, Science 358, 344 (2017).  https://doi.org/10.1126/science.aao0763 ADSCrossRefGoogle Scholar
  14. 14.
    Q. Lu, S. Liu, X. Wu, L. Liu, and L. Xu, Opt. Lett. 41, 1736 (2016).  https://doi.org/10.1364/OL.41.001736 ADSCrossRefGoogle Scholar
  15. 15.
    J. Ward and O. Benson, Laser Photon. Rev. 5, 553 (2011).  https://doi.org/10.1002/lpor.201000025 ADSCrossRefGoogle Scholar
  16. 16.
    N. V. Kryzhanovskaya, E. I. Moiseev, Y. S. Polubavkina, M. V. Maximov, D. V. Mokhov, I. A. Morozov, M. M. Kulagina, Y. M. Zadiranov, A. A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, and A. E. Zhukov, Laser Phys. Lett. 15, 015802 (2018).  https://doi.org/10.1088/1612-202X/aa9306 ADSCrossRefGoogle Scholar
  17. 17.
    M. Fetisova, N. Kryzhanovskaya, I. Reduto, E. Moiseev, S. Blokhin, K. Kotlyar, S. Scherbak, A. Lipovskii, A. Kornev, A. Bukatin, M. Maximov, nd A. Zhukov, J. Phys.: Conf. Ser. 1124, 051007 (2018).  https://doi.org/10.1088/1742-6596/1124/5/051007 CrossRefGoogle Scholar
  18. 18.
    Q. Yu, J. Hui, P. Wang, and X. Wang, Inorg. Chem. 51, 9539 (2012).  https://doi.org/10.1021/ic301371q CrossRefGoogle Scholar
  19. 19.
    W. Qu, B. Meng, Y. Yu, and S. Wang, Mater. Sci. Eng. C 76, 646 (2017).  https://doi.org/10.1016/j.msec.2017.03.036 CrossRefGoogle Scholar
  20. 20.
    L. Diéguez, N. Darwish, M. Mir, E. Martínez, M. Moreno, and J. Samitier, Sens. Lett. 7, 851 (2009).  https://doi.org/10.1166/sl.2009.1161 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. V. Fetisova
    • 1
    • 4
    Email author
  • A. A. Kornev
    • 1
  • A. S. Bukatin
    • 1
  • N. A. Filatov
    • 1
  • I. E. Eliseev
    • 1
  • N. V. Kryzhanovskaya
    • 1
    • 2
  • I. V. Reduto
    • 1
    • 2
    • 4
  • E. I. Moiseev
    • 1
  • M. V. Maximov
    • 1
    • 3
  • A. E. Zhukov
    • 1
    • 2
  1. 1.St. Petersburg National Research Academic University, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.Ioffe Institute, Russian Academy of SciencesSt. PetersburgRussia
  4. 4.University of Eastern FinlandJoensuuFinland

Personalised recommendations