Advertisement

Technical Physics Letters

, Volume 45, Issue 12, pp 1200–1203 | Cite as

A Study of the Optical and Acoustic Spectral Characteristics by Laser Breakdown of Water in an Ultrasonic Field

  • A. V. BulanovEmail author
  • I. G. Nagorny
  • E. V. Sosedko
Article
  • 9 Downloads

Abstract

A strong dependence of the optical breakdown in a liquid in the ultrasonic field on the amplitude and frequency of ultrasound is demonstrated. The increase in the intensity of spectral lines of potassium and oxygen during the optical breakdown is detected by the increase in the amplitude and frequency of ultrasound. At the same time, the effect of saturation is observed at high frequencies (above 200 kHz) and for high ultrasonic powers, when the growth in the intensity of spectral lines slows sharply down. This shows that there is no necessity to use high powers and frequencies of ultrasound to study the opto-acoustic effects during optical breakdown in a liquid.

Keywords:

optical breakdown laser-spark spectroscopy ultrasound spectral lines opto-acoustic effects. 

Notes

FUNDING

The analysis of optical and acoustic emission by laser breakdown was supported by the Russian Foundation for Basic Research, projects nos. 17-02-00561-а and 16-02-00841-а. The spectroscopic studies of the optical effects of breakdown were supported by the Russian Foundation for Basic Research, project no. 18-32-20146 mol-а-ved.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    W. Lauterborn and T. Kurz, Rep. Prog. Phys. 73, 106501 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    R. Roy, C. H. Farny, T. Wu, R. G. Holt, and T. W. Murray, J. Acoust. Soc. Am. 143, 1835 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2nd ed. (Wiley, Chichester, 2013).CrossRefGoogle Scholar
  4. 4.
    A. V. Bulanov, I. G. Nagornyi, and E. V. Sosedko, Tech. Phys. 58, 1201 (2013).CrossRefGoogle Scholar
  5. 5.
    J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, Phys. Fluids 26, 122007 (2014).  https://doi.org/10.1063/1.4904718 ADSCrossRefGoogle Scholar
  6. 6.
    A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, Appl. Spectrosc. 61, 171 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Bulanov and I. G. Nagornyi, Bull. Russ. Acad. Sci.: Phys. 78, 160 (2014).CrossRefGoogle Scholar
  8. 8.
    A. V. Bulanov, I. G. Nagorny, and E. V. Sosedko, Tech. Phys. Lett. 43, 753 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    V. A. Akulichev and V. A. Bulanov, Acoustic Studies of Small-Scale Heterogeneities in the Marine Environment (TOI DVO RAN, Vladivostok, 2017) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Bulanov
    • 1
    • 2
    Email author
  • I. G. Nagorny
    • 2
    • 3
  • E. V. Sosedko
    • 1
  1. 1.Il’ichev Pacific Institute of Oceanology, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.Far East Federal UniversityVladivostokRussia
  3. 3.Institute of Automation and Control Processes, Far East Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations