Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 1050–1053 | Cite as

The Role of Elastic Stresses in the Formation of Nitride Nanowires with Cubic Crystalline Structure

  • N. V. SibirevEmail author
  • Yu. S. Berdnikov
  • V. N. Sibirev
Article
  • 6 Downloads

Abstract

A new theoretical explanation of the growth of nitride nanowires (NWs) in a metastable cubic crystalline phase (sphalerite) is proposed. It is shown that the allowance for elastic stresses can explain the growth of single-crystalline nitride NWs with a cubic crystalline lattice. The possibility of growing GaN nanowires in a metastable phase on sapphire substrates is considered.

Keywords:

polytypes nanowires nitrides sphalerite zinc blende. 

Notes

ACKNOWLEDGMENTS

We are grateful to S.A. Kukushkin for useful advice and fruitful discussions.

FUNDING

This study was supported in part by the Russian Science Foundation, project no. 19-72-30004.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    C.-Y. Ye, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B 46, 10086 (1992).  https://doi.org/10.1103/PhysRevB.46.10086 ADSCrossRefGoogle Scholar
  2. 2.
    N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, M. V. Nazarenko, and V. G. Dubrovskii, Phys. Solid State 52, 1531 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    F. Glas, J. C. Harmand, and G. Patriarche, Phys. Rev. Lett. 99, 146101 (2007).  https://doi.org/10.1103/PhysRevLett.99.146101 ADSCrossRefGoogle Scholar
  4. 4.
    I. P. Soshnikov, G. E. Cirlin, A. A. Tonkikh, V. N. Nevedomski, Yu. B. Samsonenko, and V. M. Ustinov, Phys. Solid State 49, 1440 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    S. Kang, B. K. Kang, S. W. Kim, and D. H. Yoon, Cryst. Growth Des. 10, 2581 (2010).  https://doi.org/10.1021/cg901546t CrossRefGoogle Scholar
  6. 6.
    S. Strite and H. Morkosç, J. Vac. Technol. B 10, 1237 (1992).  https://doi.org/10.1116/1.585897 CrossRefGoogle Scholar
  7. 7.
    L. Fang and B. Cai, Nanomater. Nanotecnol. 6, 32 (2016).CrossRefGoogle Scholar
  8. 8.
    B. W. Jacobs, V. M. Ayres, M. A. Crimp, and K. McElroy, Nanotechnology 19, 405706 (2008).  https://doi.org/10.1088/0957-4484/19/40/405706 CrossRefGoogle Scholar
  9. 9.
    V. Gottschalch, G. Wagner, J. Bauer, H. Paetzelt, and M. Shirnow, J. Cryst. Growth 310, 5123 (2008).  https://doi.org/10.1016/J.JCRYSGRO.2008.08.013 ADSCrossRefGoogle Scholar
  10. 10.
    M. de la Mata, X. Zhou, F. Furtmayr, J. Teubert, S. Gradečak, M. Eickhoff, A. Fontcuberta i Morral, and J. Arbiol, J. Mater. Chem. C 1, 4300 (2013).  https://doi.org/10.1039/c3tc30556b CrossRefGoogle Scholar
  11. 11.
    F. Glas and B. Daudin, Phys. Rev. B 86, 174112 (2012).  https://doi.org/10.1103/PhysRevB.86.174112 ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Koryakin, S. A. Kukushkin, and N. V. Sibirev, Semiconductors 53, 350 (2019).  https://doi.org/10.1134/S1063782619030102 ADSCrossRefGoogle Scholar
  13. 13.
    B. K. Meyer, Landolt–Börnstein. Group III. Condensed Matter, Vol. 44A: New Data and Updates for I–VII, IIIV, III–VI, and IV–VI Compounds, Ed. by U. Roessler (Springer, Berlin, Heidelberg, 2008), p. 265.  https://doi.org/10.1007/978-3-540-48529-2 Google Scholar
  14. 14.
    E. Monroy, M. Hermann, E. Sarigiannidou, T. Andreev, P. Holliger, S. Monnoye, H. Mank, B. Daudin, and M. Eickhoff, J. Appl. Phys. 96, 3709 (2004).  https://doi.org/10.1063/1.1787142 ADSCrossRefGoogle Scholar
  15. 15.
    J. Arbiol, S. Estradé, J. D. Prades, A. Cirera, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M. H. Gass, A. L. Bleloch, F. Peiro, and J. R. Morante, Nanotecnology 20, 145704 (2009).  https://doi.org/10.1088/0957-4484/20/14/145704 ADSCrossRefGoogle Scholar
  16. 16.
    C. Tessarek, S. Figge, A. Gust, M. Heilmann, C. Dieker, E. Spiecker, and S. Christiansen, J. Phys. D: Appl. Phys. 47, 394008 (2014).  https://doi.org/10.1088/0022-3727/47/39/394008 CrossRefGoogle Scholar
  17. 17.
    S. R. Ryu, S. D. Gopal Ram, Y. H. Kwon, W. C. Yang, S. H. Kim, Y. D. Woo, S. H. Shin, and T. W. Kang, J. Mater. Sci. 50, 6260 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    T. Paskova, V. Darakchieva, E. Valcheva, P. P. Paskov, B. Monemar, and M. Heuken, J. Cryst. Growth 257, 1 (2003).  https://doi.org/10.1016/S0022-0248(03)01374-5 ADSCrossRefGoogle Scholar
  19. 19.
    V. Consonni, M. Knelangen, L. Geelhaar, A. Trampert, and H. Riechert, Phys. Rev. B 81, 085310 (2010).  https://doi.org/10.1103/PhysRevB.81.085310 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. V. Sibirev
    • 1
    Email author
  • Yu. S. Berdnikov
    • 1
  • V. N. Sibirev
    • 2
  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (ITMO University)St. PetersburgRussia
  2. 2.St. Petersburg Mining UniversitySt. PetersburgRussia

Personalised recommendations