Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 1054–1058 | Cite as

Electron-Impact-Induced Fragmentation of a Glutamine Molecule

  • A. V. Papp
  • V. S. Vukstich
  • L. G. Romanova
  • T. A. Snegurskaya
  • I. G. Megela
  • A. V. SnegurskyEmail author
Article
  • 4 Downloads

Abstract

The formation of ionized products upon single and dissociative ionization of a glutamine (C5H10N2O3) molecule by electron impact at low (70 eV) and high (11.5 MeV) energies has been studied by method of mass spectrometry. The mass spectra of glutamine molecules have been obtained upon electron irradiation to various doses (0, 5, 10, and 20 kGy) and for various threshold functions of ion fragment yield. The absolute values of ion fragment appearance energies are determined. Electron beams were generated by a three-electrode gun and electron accelerator (microtron). Comparative analysis of the measured mass spectra of unirradiated and irradiated glutamine molecules showed that high-energy irradiation produced irreversible changes in the molecular structure.

Keywords:

glutamine mass spectrum electron beam ion fragment appearance potential appearance energy. 

Notes

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    V. S. Vukstich, L. G. Romanova, I. G. Megela, A. V. Papp, and A. V. Snegurskii, Tech. Phys. Lett. 40, 263 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    V. S. Vukstich, L. G. Romanova, I. G. Megela, A. V. Papp, and A. V. Snegursky, Tech. Phys. Lett. 40, 901 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    V. S. Vukstich, L. G. Romanova, I. G. Megela, A. V. Papp, and A. V. Snegurskii, Tech. Phys. Lett. 43, 416 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    J. F. Ward, Advances in Radiation Biology, Ed. by J. T. Lett and H. Adler (Academic, New York, 1977), p. 181.Google Scholar
  5. 5.
    Q. Zhang, V. H. Wysocki, P. Y. Scaraffia, and M. A. Wells, J. Am. Soc. Mass Spectrom. 16, 1192 (2005).CrossRefGoogle Scholar
  6. 6.
    B. Wang, G. Wu, Z. Zhou, Z. Dai, Y. Sun, Y. Ji, W. Li, W. Wang, C. Liu, F. Han, and Z. Wu, Amino Acids 47, 2143 (2015).CrossRefGoogle Scholar
  7. 7.
    I. Webb, E. J. Andriole, and J. C. Poutsma, Int. J. Mass Spectrom. Ion Proces. 267, 54 (2007).CrossRefGoogle Scholar
  8. 8.
    Chemistry Webbook. Standard Reference Database. National Institute of Standards. http://webbook.nist.gov.Google Scholar
  9. 9.
    V. S. Vukstich, A. I. Imre, and A. V. Snegurskii, Instrum. Exp. Tech. 54, 207 (2011).CrossRefGoogle Scholar
  10. 10.
    V. S. Vukstich, A. I. Imre, L. G. Romanova, and A. V. Snegursky, J. Phys. B 43, 185208 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Snegursky, J. Tamuliene, L. G. Romanova, and V. S. Vukstich, Amino Acid Molecules Fragmentation by Low-Energy Electrons (Nova Publ., New York, 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Papp
    • 1
  • V. S. Vukstich
    • 1
  • L. G. Romanova
    • 1
  • T. A. Snegurskaya
    • 2
  • I. G. Megela
    • 1
  • A. V. Snegursky
    • 1
    Email author
  1. 1.Institute of Electron Physics, National Academy of Sciences of UkraineUzhgorodUkraine
  2. 2.Uzhgorod National UniversityUzhgorodUkraine

Personalised recommendations