Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 1042–1046 | Cite as

A Change in the Debye Temperature of a Single-Component Substance upon Amorphization

  • M. N. MagomedovEmail author
Article
  • 3 Downloads

Abstract

A method for calculating the Debye temperature of a single-component substance in the amorphous state is proposed based on a nonlinear dependence of first coordination number kn of the given structure on its packing factor kp as established previously. Proceeding from previously defined parameters of the Mie–Lennard-Jones potential, the Debye temperatures have been calculated for some pure crystalline and amorphous metals, diamond, silicon, and germanium, which are in good agreement with estimations reported by other researchers. It is shown that a minimum specific Helmholtz free energy is attained at kp = 0.45556, which means that this packing corresponds to a thermodynamically stable amorphous structure.

Keywords:

amorphization Debye temperature metals silicon germanium. 

Notes

ACKNOWLEDGMENTS

I am grateful to E.N. Akhmedov, S.P. Kramynin, N.Sh. Gazanova, and Z.M. Surkhaeva for their help in work and fruitful discussions.

FUNDING

This study was supported by the Russian Foundation for Basic Research (project no. 18-29-11013_mk) and the Presidium of the Russian Academy of Sciences (project no. I.13).

REFERENCES

  1. 1.
    D. K. Belashchenko, Computer Simulation of Liquid and Amorphous Substances (MISIS, Moscow, 2005) [in Russian].Google Scholar
  2. 2.
    R. N. Singh and I. Ali, Int. J. Appl. Phys. Math. 3, 275 (2013).  https://doi.org/10.7763/IJAPM.2013.V3.220 CrossRefGoogle Scholar
  3. 3.
    G. Melnikov, S. Emelyanov, N. Ignatenko, and O. Manzhos, Key Eng. Mater. 781, 137 (2018). 10.4028/www.scientific.net/KEM.781.137Google Scholar
  4. 4.
    A. Baule, F. Morone, H. J. Herrmann, and H. A. Makse, Rev. Mod. Phys. 90, 015006 (2018).  https://doi.org/10.1103/RevModPhys.90.015006 ADSCrossRefGoogle Scholar
  5. 5.
    M. N. Magomedov, J. Struct. Chem. 49, 156 (2008).  https://doi.org/10.1007/s10947-008-0021-8 CrossRefGoogle Scholar
  6. 6.
    M. N. Magomedov, Study of Interatomic Interactions, Formation of Vacancies and Self-Diffusion in Crystals (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  7. 7.
    M. N. Magomedov, Tech. Phys. 58, 1297 (2013).  https://doi.org/10.1134/S106378421309020X CrossRefGoogle Scholar
  8. 8.
    L. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).Google Scholar
  9. 9.
    M. N. Magomedov, Tech. Phys. 60, 1619 (2015).  https://doi.org/10.1134/S1063784215110195 CrossRefGoogle Scholar
  10. 10.
    E. N. Akhmedov, in Physico-Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials (Tver. Gos. Univ., Tver, 2018), No. 10, pp. 53–63 [in Russian].  https://doi.org/10.26456/pcascnn/2018.10.053
  11. 11.
    E. N. Akhmedov, J. Phys. Chem. Solids 121, 62 (2018).  https://doi.org/10.1016/j.jpcs.2018.05.011 ADSCrossRefGoogle Scholar
  12. 12.
    N. Sh. Gazanova, Appl. Solid State Chem. 3 (4), 36 (2018).  https://doi.org/10.18572/2619-0141-2018-3-4-36-40 CrossRefGoogle Scholar
  13. 13.
    M. N. Magomedov, Tech. Phys. 62, 569 (2017).  https://doi.org/10.1134/S1063784217040156 CrossRefGoogle Scholar
  14. 14.
    O. A. Troitskii, A. V. Drinkov, and S. V. Zaitsev, Vopr. At. Nauki Tekh., Ser.: Fiz. Rad. Povrezhd. Rad. Materialoved. 98 (4), 132 (2011).Google Scholar
  15. 15.
    M. N. Magomedov, Phys. Solid State 59, 1085 (2017).  https://doi.org/10.1134/S1063783417060142 ADSCrossRefGoogle Scholar
  16. 16.
    M. Mertig, G. Pompe, and E. Hegenbarth, Solid State Commun. 49, 369 (1984).  https://doi.org/10.1016/0038-1098(84)90589-1 ADSCrossRefGoogle Scholar
  17. 17.
    J. L. Feldman, P. B. Allen, and S. R. Bickham, Phys. Rev. B 59, 3551 (1999).  https://doi.org/10.1103/physrevb.59.3551 ADSCrossRefGoogle Scholar
  18. 18.
    B. L. Zink, R. Pietri, and F. Hellman, Phys. Rev. Lett. 96, 055902 (2006).  https://doi.org/10.1103/PhysRevLett.96.055902 ADSCrossRefGoogle Scholar
  19. 19.
    C. N. King, W. A. Phillips, and J. P. de Neufville, Phys. Rev. Lett. 32, 538 (1974).  https://doi.org/10.1103/PhysRevLett.32.538 ADSCrossRefGoogle Scholar
  20. 20.
    P. Flubacher, A. J. Leadbetter, and J. A. Morrison, Philos. Mag. 4 (39), 273 (1959).  https://doi.org/10.1080/14786435908233340 ADSCrossRefGoogle Scholar
  21. 21.
    Z. Zeng, L. Yang, Q. Zeng, H. Lou, H. Sheng, J. Wen, D. J. Miller, Y. Meng, W. Yang, W. L. Mao, and H. K. Mao, Nat. Commun. 8, 322 (2017).  https://doi.org/10.1038/s41467-017-00395-w ADSCrossRefGoogle Scholar
  22. 22.
    W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).  https://doi.org/10.1063/1.1670641 ADSCrossRefGoogle Scholar
  23. 23.
    J. W. Garland, K. H. Bennemann, and F. M. Mueller, Phys. Rev. Lett. 21, 1315 (1968).  https://doi.org/10.1103/physrevlett.21.1315 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Geothermal Research, Dagestan Scientific Center, Russian Academy of SciencesDagestanRussia

Personalised recommendations