Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 1031–1034 | Cite as

Luminescence Properties of GaInAsP Layers with Graded Composition–Depth Profiles Grown on InP Substrates

  • G. S. GagisEmail author
  • A. S. Vlasov
  • R. V. Levin
  • A. E. Marichev
  • M. P. Scheglov
  • T. B. Popova
  • B. Ya. Ber
  • D. Yu. Kazantsev
  • D. V. Chistyakov
  • V. I. Kuchinskii
  • V. I. Vasil’ev
Article
  • 2 Downloads

Abstract

Luminescence properties of epilayers of Ga1 –xInxAsyP1 –y (GaInAsP) solid solutions with graded content of Group V elements (Δy up to 0.08 over a total thickness of about 1 μm) were studied at 77 and 300 K. The photoluminescence (PL) spectra of GaInAsP epilayers with large Δy values were broadened. The GaInAsP epilayers of low crystalline perfection exhibited either no PL emission or showed PL spectra characteristic of transitions involving impurity energy levels.

Keywords:

photoluminescence solid solutions heterostructures photovoltaic converters. 

Notes

ACKNOWLEDGMENTS

We are grateful to our colleagues at the Ioffe Physical Technical Institute S.I. Troshkov for providing scanning electron microscopy (SEM) images of the surface and transverse cleavages of samples and B.V. Pushnyii for kindly providing samples for investigation.

FUNDING

SIMS and SEM studies and measurements on the Camebax microanalyzer were carried out using instruments of the Center of Multi-User Scientific Equipment “Materials Science and Diagnostics for Advanced Technologies”, (Ioffe Institute) and supported by the Ministry of Education and Science of the Russian Federation, project no. ID RFMEFI62117X0018.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    A. Sasaki, Jpn. J. Appl. Phys. 19, 1695 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    V. I. Vasil’ev, G. S. Gagis, R. V. Levin, A. E. Marichev, B. V. Pushnyi, M. P. Shcheglov, V. I. Kuchinskii, B. Ya. Ber, D. Yu. Kazantsev, A. N. Gorokhov, and T. B. Popova, Tech. Phys. Lett. 44, 1127 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Marichev, R. V. Levin, B. V. Pushnyii, G. S. Gagis, V. I. Vasil’ev, M. P. Scheglov, D. Yu. Kazantsev, B. Ya. Ber, T. B. Popova, and E. P. Marukhina, J. Phys.: Conf. Ser. 1135, 012076 (2018).Google Scholar
  4. 4.
    K. Nakajima, S. Yamazaki, S. Komiya, and K. Akita, J. Appl. Phys. 52, 4575 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    A. Mircea, R. Mellet, B. Rose, D. Robein, H. Thibierge, G. Leroux, P. Daste, S. Godefroy, P. Ossart, and A-M. Pougnet, J. Electron. Mater. 15, 205 (1986).ADSCrossRefGoogle Scholar
  6. 6.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    M. P. C. M. Krijn, Semicond. Sci. Technol. 6, 27 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. S. Gagis
    • 1
    • 2
    Email author
  • A. S. Vlasov
    • 1
  • R. V. Levin
    • 1
  • A. E. Marichev
    • 1
  • M. P. Scheglov
    • 1
  • T. B. Popova
    • 1
  • B. Ya. Ber
    • 1
  • D. Yu. Kazantsev
    • 1
  • D. V. Chistyakov
    • 3
  • V. I. Kuchinskii
    • 1
    • 2
  • V. I. Vasil’ev
    • 1
  1. 1.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Electrotechnical University LETISt. PetersburgRussia
  3. 3.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations